Name	

Block	

Unit 7 Test Review Packet

Part A	: Percent	Composition
--------	-----------	-------------

- 1. Explain how to find the total mass of a compound, such as sodium sulfate, Na₂SO₄.
- 2. Calculate the percent composition of **sodium** in Na₂SO_{4.} [Must show work]
- 3. Calculate the percent composition of *sulfur* in Na₂SO₄. [Must show work]
- 4. Calculate the percent composition of **oxygen** in Na₂SO₄. [Must show work]

Part B: Empirical and Molecular Formulas

- 1. A formula with the lowest whole # ratio of elements in a compound is called the _____ formula.
- 2. The actual formula that shows the exact number and ratio of atoms is called the ______ formula.
- 3. Which of the following are empirical formulas? C₄H₈O₂
- N_2O_4
- CH₄
- $P_{2}O_{5}$

- 4. All of the following are empirical formulas, EXCEPT:
- C₃H₈
 - Na₂SO₄
- C_4H_6 $AI_3(SO_4)_2$
- 5. Ascorbic acid is a naturally occurring organic compound with antioxidant properties, known as Vitamin C. The molecular formula is $C_6H_8O_6$. What is the empirical formula?
- 6. Caffeine has an elemental analysis of 49.48% carbon, 5.190% hydrogen, 16.47% oxygen, and 28.85% nitrogen. What is the empirical formula for caffeine? [Must show work.]
- 7. What is the name and empirical formula of an ionic compound that contains 55.2584 % potassium, 14.5919 % phosphorus, and 30.1497 % oxygen? [Must show work.]

What is the molecular formula of this compound? [Must show work]
 Naphthalene is compound containing carbon and hydrogen. It is often used in moth balls. The empirical formula is C₅H₄ and its molar mass is 128.16g/mol. Find the molecular formula. [Must show work]
10. A compound containing 39.97% C; 13.41% H; and 46.62% N has a molar mass of 60.10g/mol. Find the molecular formula. [Must show work]
Part C: Types of Chemical Reactions
Define each type of chemical reaction in your own words.
Synthesis
Decomposition
Single Replacement
Double Replacement
Neutralization
Combustion

Part D: Balancing Chemical Equations

Part E: Identifying the Type of Reaction

For each reaction below, identify the type of reaction.

- 1) sodium + bromine ---> sodium bromide
- 2) calcium chloride ---> calcium + chlorine
- 3) ethane (C2H6) + oxygen ---> carbon dioxide + water
- 4) aluminum + sulfur ---> aluminum sulfide
- 5) barium chloride + copper (II) sulfate ---> barium sulfate + copper (II) chloride
- 6) copper (II) carbonate ---> copper (II) oxide + carbon dioxide
- 7) nickel + lead (IV) nitrate ---> lead + nickel (II) nitrate
- 8) propane (C3H8) + oxygen ---> carbon dioxide + water
- 9) diphosphorous pentoxide + water ---> phosphoric acid
- 10) mercury (II) oxide ---> mercury + oxygen
- 11) gold + magnesium bromide ---> gold (III) bromide + magnesium
- 12) hydrochloric acid + sodium hydroxide ---> sodium chloride + water
- 13) potassium oxide + water ---> potassium hydroxide
- 14) magnesium chlorate ---> magnesium chloride + oxygen
- 15) butane (C4H10) + oxygen ---> carbon dioxide + water

Part F: Predicting the Products

Predict the products for each reaction below.	Then write the balanced chemical equation.
Hint: It will help to identify the type of reactio	n first.

- 1) iron (II) nitrate + potassium hydroxide --->
- 2) zinc + copper (I) bromide --->
- 3) hydrogen + oxygen --->
- 4) water + sulfur trioxide --->
- 5) sulfuric acid + potassium hydroxide --->
- 6) barium carbonate --->
- 7) phosphorous pentachloride --->
- 8) silver nitrate + calcium bromide --->