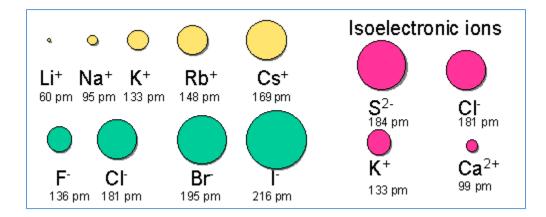

Unit 5 Ions & Chemical Bonding		Name
Define the following		
Element		
Compound		
Homogeneous mixture		
Heterogeneous mixture		
Latin Element Symbols		
• Gold	Mercury	Antimony
• Silver	Potassium	• Tin
• Copper	• Sodium	• Iron
Elements vs Compounds		
> is the symbol for the elem	ent	
> is the formula for	·	
> is the formula for	······································	
Law of Definite Composition		
Example: Calculate the percent Molecule		
	oosed of two or more	atoms.
• Examples of allotropes:		
Law of Multiple Proportions		
When elements can combine in diffe ratios.	rent ways to form different comp	oounds, they always do it in
> Examples: Theobromine - C	$f H$ $f N$ $f O$ and Vitamin B_3 - $f C$	H N O
>	are used to represent of	compounds and molecules.
>	equal number of atom	s for each element
>Internation	onal Union of Pure and Ap	plied Chemistry naming system

Ionic Bonding

lonic Bonding occurs when a ______ atom _____ valence electrons to a ______ atom to from a ______.

- Metal atoms _____ electrons to become _____.
- Nonmetal atoms ______ electrons to become ______.

Properties of Ionic compounds

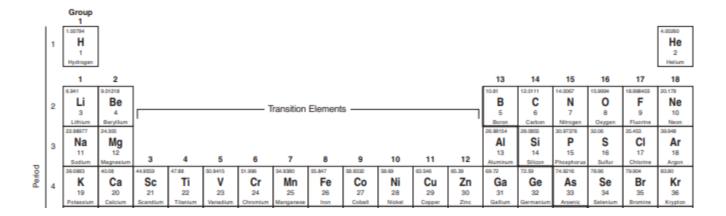

- _____ lattice
- _____ melting points
- _____ vapor pressure

- •
- _____ conductors
- _____ solutions

Lattice Energy

According to Coulomb's Law, the ______ the charges the _____ the force. So as atoms get smaller, the ionic bond gets stronger and requires _____ energy to break apart.

Practice Problems: Use the image below to compare the physical and chemical properties of each ionic bond.



- (a) The lattice energy of NaCl is _____ than CsCl
- (b) A bond between Ca and F is _____ than a bond between Na and Cl
- (c) The melting point of KBr is _____ than LiF

Oxidation Numbers

 Stand for the based on the number of lost or 	St	Stand for the	based on the number of	lost or	gained
--	----	---------------	------------------------	---------	--------

• Label the oxidation numbers for Groups 1, 2, 13, 15, 16, 17, and 18 on the portion of the periodic table shown below:

Net Charge = ZERO

Examples: Fill in the rest of the examples based on Presentation Slide #20.

Reactants	Ionic Bond	Compound Name
1 Na ⁺¹ + 1 Cl ⁻¹ →	Na ₁ Cl ₁	sodium chlor <u>ide</u>

Transition Metals

 Transition Metals have oxidation states because of the electrons in the 	orbital
---	---------

•	The IUPAC naming system assigns	to indicate their	·
---	---------------------------------	-------------------	---

Examples:

Reactants	Ionic Bond	Compound Name

Polyatomic Ions

- _____ molecules that form an _____ charge.
- College Prep must memorize the following:

NH₄⁺¹ Ammonium CO₃⁻² Carbonate

OH ¹ Hydroxide SO₄ ² Sulfate

NO₃-1 Nitrate PO₄-3 Phosphate

• Honors students must memorize the following:

NH_4^{+1}	ammonium	MnO ₄ -1	permanganate
NO ₃ ⁻¹	nitrate	$C_2H_3O_2^{-1}$	acetate
NO_2^{-1}	nitrite	CO ₃ -2	carbonate
O_2^{-2}	peroxide	HCO ₃ -1	bicarbonate
OH ⁻¹	hydroxide	SO ₄ -2	sulfate
CN ⁻¹	cyanide	SO ₃ -2	sulfite
CIO ₄ -1	perchlorate	CrO ₄ -2	chromate
CIO ₃ -1	chlorate	Cr ₂ O ₇ -2	dichromate
CIO ₂ -1	chlorite	PO ₄ -3	phosphate
CIO ⁻¹	hypochlorite	PO ₃ -3	phosphite

Examples: Fill in the table below based on Common Polyatomic Ionic Bonds

Reactants	Ionic Bond	Compound Name
1 Na ⁺¹ + 1 HCO ₃ ⁻¹ →	NaHCO₃	sodium bi carbon ate

Covalent Bonding

•	Occurs when two or more	atoms	s valence electrons to form a _	•
---	-------------------------	-------	---------------------------------	---

- Generally, follows the ______, because most atoms want _____ valence electrons.
- Some common examples: