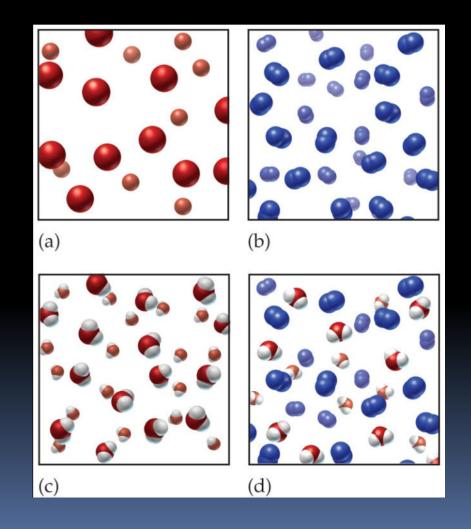

Unit 5: Ions & Chemical Bonding

A Review of Matter



Elements, Compounds, or Mixtures

Concept Practice:

Classify each of the following as an element, a compound, or a mixture as shown in the illustration on the right.

- a) Element
- b) Diatomic Element
- c) Compound/Molecule
- d) Mixture

Names of the Elements

- Each element has a unique name.
- Names have several origins:
 - Hydrogen is derived from Greek.
 - Carbon is derived from Latin.
 - Scandium is named for Scandinavia.
 - Nobelium is named for Alfred Nobel.
 - Yttrium is named for the town of Ytterby, Sweden.

Pure Yttrium

Latin Symbols

Gold – Au

Sodium – Na

Silver - Ag

Antimony – Sb

Copper – Cu

Tin - Sn

Mercury – Hg

Iron – Fe

Potassium – K

Tungsten - W

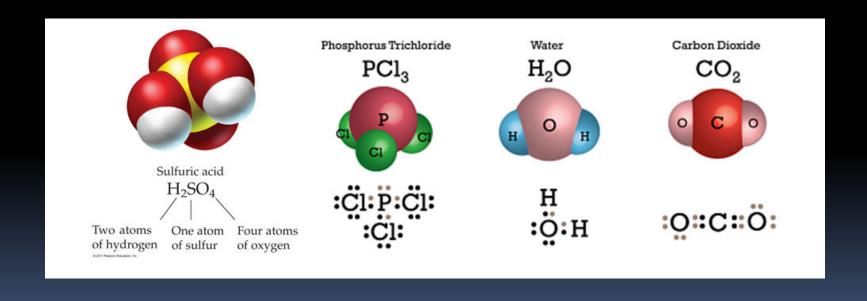
Element Symbols vs Chemical Formulas

- When an element symbol has two letters, the first is capitalized and the second is lowercase.
 - C is the symbol for carbon
 - Cd is the symbol for cadmium
- A chemical formula uses a capital letter for each new element.
 - Co is the symbol for the element cobalt
 - CO is the formula for carbon monoxide
 - CoO is the formula for cobalt II oxide

Law of Definite Composition

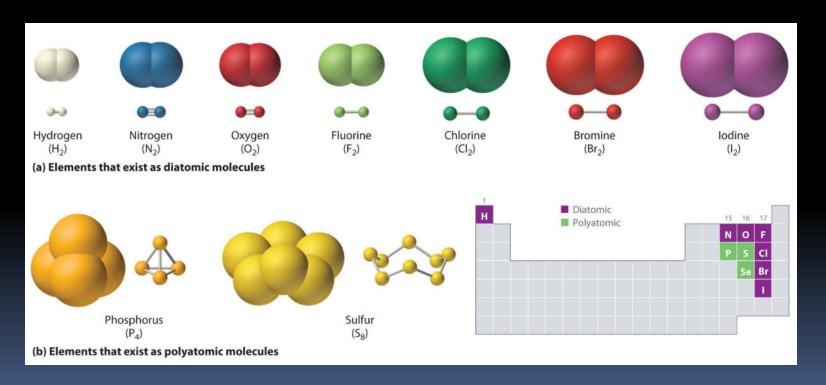
 Compounds always contain the same elements in a constant proportion by mass.

Example: Water is always 11% hydrogen and 89% oxygen by mass

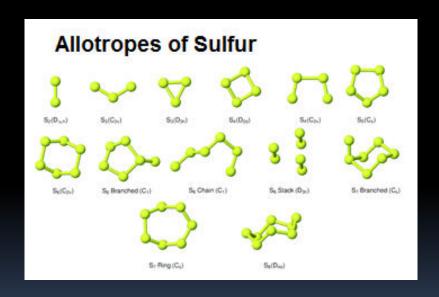

Water =
$$H_2O$$

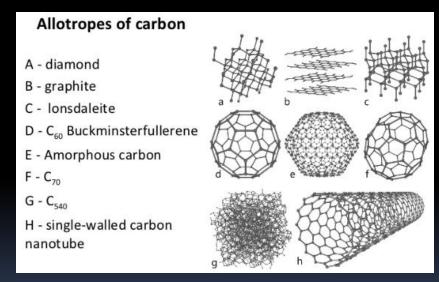
Hydrogen =
$$1.00794 \times 2 = 2.0159$$
 grams
+ Oxygen = $15.9994 \times 1 = 15.9994$ grams
Water = 18.0152 grams

Hydrogen = $(2.0159/18.1052) \times 100 = 11.19\%$ H Oxygen = $(15.9994/18.1052) \times 100 = 88.81\%$ O


Molecule

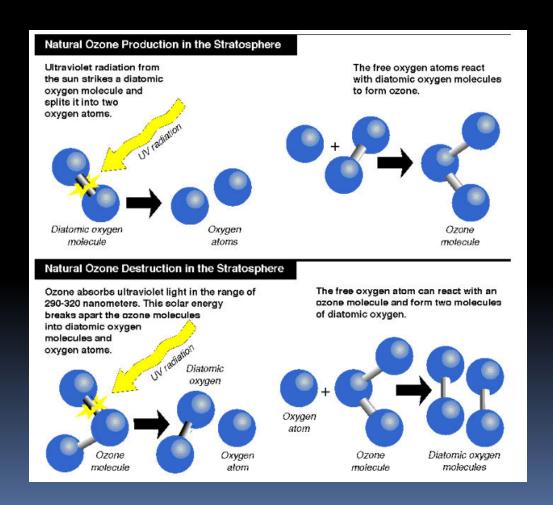
 A covalent chemical composed of two or more nonmetal atoms is called a molecule.


Diatomic Molecules


 Diatomic Molecules – elements made up of two of the same type of atom.

Allotropes

 Allotrope - when an element exists in more than one form in a given physical state



Sulfur and carbon have solid state allotropes.

Allotropes of Oxygen

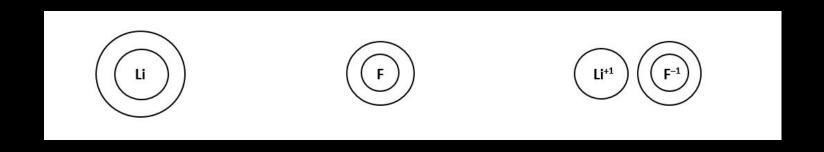
Oxygen's allotropes are in the gas state.

Law of Multiple Proportions

 When elements combine in different ways to form different compounds, they always do it in whole number ratios.

Examples:

- ➤ Theobromine is a bitter alkaloid of the cacao plant: C₇H₈N₄O₂
- Vitamin B3, also called niacin, can treat high cholesterol and triglyceride levels: C₆H₆N₂O

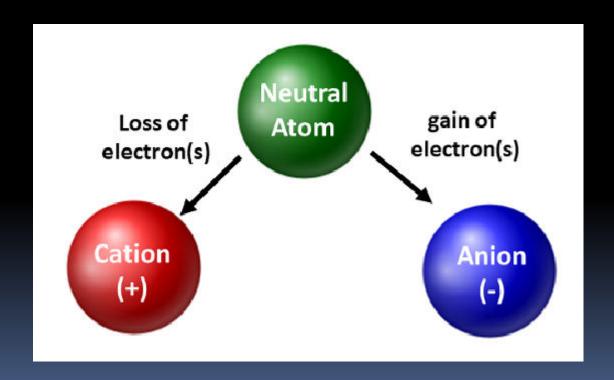

Chemical Nomenclature

- Chemical formulas are used to represent compounds and molecules.
- Subscripts equa the number of atoms of each type of element in the formula
- The International Union of Pure and Applied Chemistry (IUPAC) system is used for naming compounds.

Krug 2016 1.

Ionic Bonding

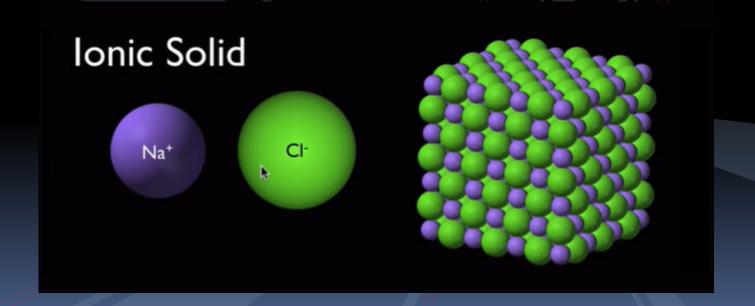
 Occurs when a metal atom TRANSFERS valence electrons to a nonmetal atom to form a compound.



Notice that the valence orbitals of each ion are completely filled.

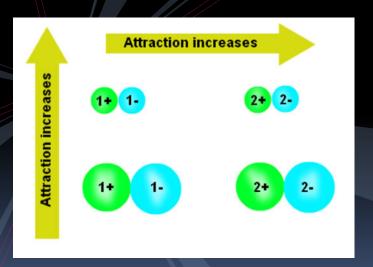
Lithium 1s² Fluorine 1s² 2s² 2p⁶

Ions & Chemical Bonding


 When neutral atoms lose or gain valence electrons, they become IONS.

Properties of Ionic Compounds

- Crystal Lattice
- Low Vapor Pressure
 Aqueous Solution


- Brittle
- High melting points Poor Conductors

Lattice Energy

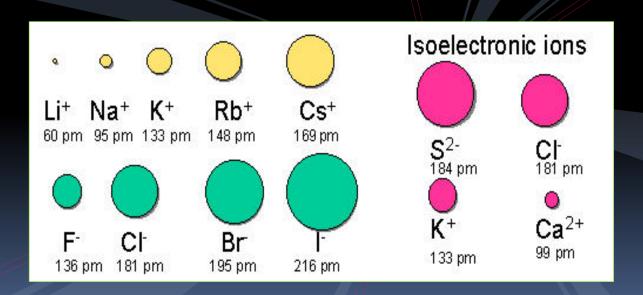
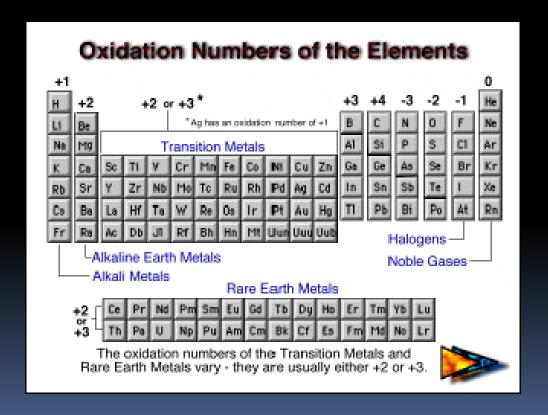

According to Coulomb's Law, the closer the charges the stronger the force. So as atoms get smaller, the ionic bond gets stronger and requires more energy to break apart.

TABLE 6.3	Lattice Energie	es of Some Ioni	c Solids (kJ/mo	1)		
	Anion					
Cation	F-	CI ⁻	Br ⁻	I-	O ²⁻	
Li+	1036	853	807	757	2925	
Na ⁺	923	787	747	704	2695	
K ⁺	821	715	682	649	2360	
Be ²⁺	3505	3020	2914	2800	4443	
Mg ²⁺	2957	2524	2440	2327	3791	
Ca ²⁺	2630	2258	2176	2074	3401	
Be ²⁺ Mg ²⁺ Ca ²⁺ Al ³⁺	5215	5492	5361	5218	15,916	


Practice Problems

- The lattice energy of NaCl is **greater** \ than RbCl.
- A bond between Ca and F is stronger than a bond between Na and Cl.
- The melting point of KBr is less than LiF.

Oxidation numbers

lonic charge based on the number of electrons lost or gained.

Net charge = zero

- When <u>opposite</u> ions attract, their charges <u>cancel out</u>.
 - □ 1 Na⁺¹ + 1 Cl⁻¹ → NaCl sodium chloride
 - □ 2 Na⁺¹ + 1 O⁻² → Na₂O sodium oxide
 - □ 1 Mg⁺² + 2 Cl⁻¹ → MgCl₂ magnesium chloride
 - □ 1 Mg⁺² + 1 O⁻² → MgO magnesium oxide

Naming Transition Metals

- Transition Metals have multiple oxidation states because of the unpaired electrons in the d-orbital.
- The IUPAC naming system assigns Roman Numerals to indicate their ionic charge.

Examples:

 $1 \text{ Fe}^{+2} + 1 \text{ O}^{-2} \rightarrow \text{FeO iron II oxide}$

 $2 \text{ Fe}^{+3} + 3 \text{ O}^{-2} \rightarrow \text{Fe}_2\text{O}_3 \text{ iron III oxide}$

Polyatomic Ions

Nonmetal molecules that form an ionic charge.

Must memorize the following:

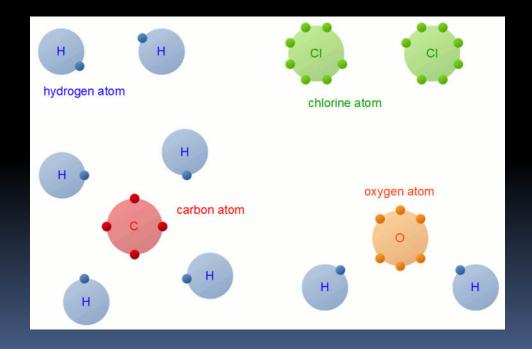
NH_4^{+1}	Ammonium	CO ₃ -2	Carbonate
OH -1	Hydroxide	SO ₄ -2	Sulfate
NO ₃ -1	Nitrate	PO ₄ -3	Phosphate

Common Polyatomic Ionic Bonds

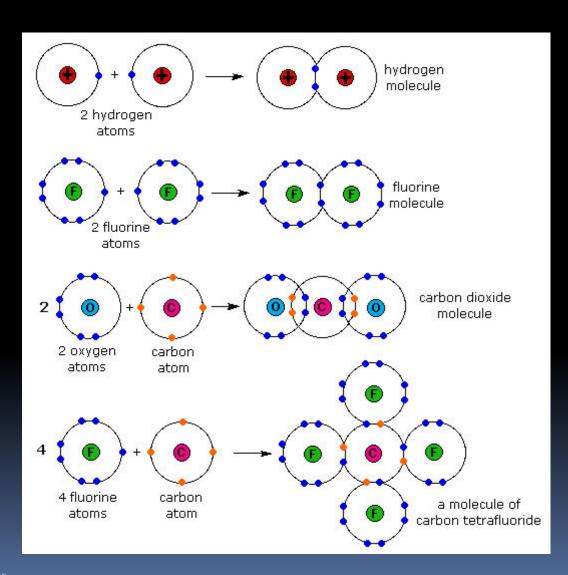
Baking Soda – Sodium bicarbonate

$$1 \text{ Na}^{+1} + 1 \text{ HCO}_3^{-1} \rightarrow \text{NHCO}_3$$

Calcium phosphate –


$$3 \text{ Ca}^{+2} + 2 \text{ PO}_4^{-3} \rightarrow \text{Ca}_3(\text{PO}_4)_2$$

Iron II hydroxide –


$$_{1}Fe^{+2} + _{2}OH^{-1} \rightarrow Fe(OH)_{2}$$

Covalent Bonding

- Occurs when two or more nonmetal atoms SHARE valence electrons to form a molecule.
- Generally follows the OCTET RULE, most atoms want
 8 valence electrons in outer orbital

Examples of Covalent Bonding

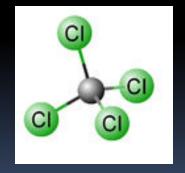
 H_2

 F_2

 CO_2

CF₄

Common Covalent Compounds


Ammonia NH₃

Water H₂O

Methane CH4

Carbon Monoxide CO

Carbon Dioxide CO2

Carbon Tettachtride CS102