Unit 3A Quiz #1: Atomic Structure		Name:				
		Block:	Date:			
I. Matching: Each scientist may be used	once or more th	ian once.				
A. Robert Millikan	D. Werner Ho	eisenburg	(G. Democritus		
B. Louis de Broglie	E. Ernest Rut	therford	ŀ	H. John Dalton		
C. James Chadwick	F. J. J. Thom	pson	İ	. Neil Bohr		
	n.					
F 2. Proposed the Plum Pudding Model						
G 3. Believed all matter was made of ato	ms.					
I 4. Proposed the Planetary Model						
H 5. Claimed that elements combine to fe	orm compounds					
I 6. Proposed that electrons orbit the nuc	leus in fixed ene	ergy orbitals.				
F 7. Proved that cathode rays were negat	ively charged pa	articles				
B8. Proposed that electron orbitals have	different shapes					
E 9. Experiment proved that positive cha	rged particles w	ere packed in the	e nucleus			
H 10. Developed First Atomic Theory						
A11. Calculated the charge to mass ratio	o of an electron					
D 12. Position and the velocity of an object	ect cannot both b	oe measured exa	ctly			
E 13. Performed the Gold Foil Experime	nt					
II. Short Answer and Fill-in-the-Blank.						
1. How many neutrons are present in ar	n isotope of ^{50}V	? 27				
2. What is the isotopic notation for an a	tom containing	12 protons, 11 r	neutrons, and	10 electrons? $^{23}_{12}Mg^{+2}$		
3. The atomic number of an atom is equ	ial to the numbe	er of <u>protons in t</u>	the nucleus.			
4. Which subatomic particle is located o	utside the nucle	eus? <u>electrons</u>				

Write the complete isotopic notation for a strontium atom with 126 subatomic particles. $^{88}_{38}Sr$

protons but a different number of neutrons. $^{12}_{6}C$ $^{13}_{6}C$ $^{14}_{6}C$

Explain what isotopes are and draw examples in the space below. <u>Isotopes are atoms that have equal number</u>

5.

6.

7. Balance the following nuclear equations:

a)
$${}^{222}_{86}Rn \rightarrow {}^{0}_{0}\gamma + {}^{222}_{86}Rn$$

c)
$${}^{200}_{80}Hg \rightarrow {}^{0}_{-1}e + {}^{200}_{81}Tl$$

b)
$$^{150}_{62}Sm \rightarrow \boxed{^{4}_{2}\alpha} + ^{146}_{60}Nd$$

d)
$$^{132}_{56}Ba \rightarrow ^{0}_{+1}\beta + ^{132}_{55}Cs$$

- 8. In order for an atom to be neutral, the number of protons must equal the number of electrons.
- 9. An isotope with a mass number of 207 and atomic number of 82 would belong to which element? Lead

III. Calculations - Must show work to earn credit.

1. Lead has four stable isotopes as shown below. Calculate the average atomic mass to three decimal places.

Isotope	Percent Abundance
²⁰⁴ Pb	1.4
²⁰⁶ Pb	24.1
²⁰⁷ Pb	22.1
²⁰⁸ Pb	52.4

$$(204 \times 0.014) + (206 \times 0.241) + (207 \times 0.221) + (208 \times 0.524)$$

= 207.241 amu

2. Thallium exists as two stable isotopes and has an atomic mass of 204.383 amu. Thallium-203 makes up 29.524% of all naturally occurring thallium atoms. Calculate the mass of the other isotope to three sig figs? Show work for your calculation.

$$100 \% - 29.524 \% = 70.476\%$$

$$204.383 = (203 \times 0.29524) + (Mass \times 0.70476)$$

$$\frac{204.383 - (203 \times 0.29524)}{0.70476} = Mass = 204.96 \approx 205 \text{ amu}$$

3. How many half-lives will it take for 15 g of radioactive Bismuth-210 to decay to less than 1 grams?

$$15 \rightarrow 7.5 \rightarrow 3.75 \rightarrow 1.875 \rightarrow 0.9375$$

4 half-lives

4. Radon-201 undergoes alpha decay every 7.0 seconds. If a 25.0 gram sample of Radon-201 was tested after 105 seconds, how many half-lives have passed?

$$105/7 = 15$$
 half lives

5. Actinium-225 decays through alpha decay with a half-life of 10 days. If a 30.0 gram sample experiences three half-life cycles, how many grams are left?

$$30 \rightarrow 15 \rightarrow 7.5 \rightarrow 3.75$$