Unit 3A Quiz #1: Atomic Structure		Name:			
·		Block:	Date:		
I. Matching: Each scientist may be used once or more than once.					
A. John DaltonB. DemocritusC. Robert Millikan	D. Louis E. Werne F. Neil B	er Heisenburg		James Chadwick J. J. Thompson Ernest Rutherford	
H 1. Proposed the Plum Pudding Model					
E 2. Position and the velocity of an obje	ct cannot bot	th be measured exa	ctly		
B 3. Believed all matter was made of ato	oms.				
A 4. Claimed that atoms are indestructib	le.				
F 5. Proposed that energy is transferred	only in certa	in well defined qua	ntities.		
C 6. Performed the Oil Drop Experimen	t				
H7. Proved that cathode rays were negative	tively charge	ed particles			
I 8. Performed the Gold Foil Experimen	t				
F 9. Proposed the Planetary Model					
G10. Bombarded beryllium atoms with	alpha particle	es and noticed neut	ral particles were	produced.	
D11. Predicted wave functions of electrons	on orbitals				
I 12. Experiment proved atoms are most	ly empty spa	ace			
A 13. Developed First Atomic Theory					
II. Short Answer and Fill-in-the-Blank.					
1. In order for an atom to be neutral, the	<u>ne number o</u>	f protons must equ	ial the number of	electrons.	
2. Explain what isotopes are and draw of	examples in	the space below. <u>I</u> s	sotopes are atom	s that have equal number	
protons but a different number of neutrons. $^{12}_{6}C$ $^{13}_{6}C$ $^{14}_{6}C$					
3. An isotope with an atomic number of 30 and a mass number of 64 would belong to which element? Zinc					
4. Write the complete isotopic notation	Write the complete isotopic notation for a potassium atom with 59 subatomic particles. $^{40}_{19}K$				
5. The atomic number of an atom is eq	The atomic number of an atom is equal to the number of protons in the nucleus.				

6. Which subatomic particle is located outside the nucleus? <u>electrons</u>

7. How many neutrons are present in an isotope of ^{52}Cr ? 28

- 8. What is the isotopic notation for an atom containing 15 protons, 16 neutrons, and 18 electrons? $\frac{31}{15}P^{-3}$
- 9. Balance the following nuclear equations:

a)
$$^{154}_{63}Eu^* \rightarrow ^{0}_{0}\gamma$$
 + $^{154}_{63}Eu$

$$^{156}_{72}Hf \rightarrow \boxed{ \frac{4}{2}\alpha } + ^{152}_{70}Yb \qquad \qquad \text{d)} \quad ^{134}_{55}Cs \rightarrow ~^{0}_{-1}\beta + \boxed{ ^{134}_{56}Ba}$$

III. Calculations - Must show work to earn credit.

1. An element has one stable isotope with a relative mass of 84.9118 amu at 72.17% abundance and another stable isotope with a relative mass of 86.9092 amu at 27.83% abundance. Calculate its average atomic mass and identify the element using the periodic table.

$$AAM = (84.9118 \times 0.7217) + (86.9092 \times 0.2783) = 85.47 amu$$

Rubidium is 85.4678 amu

2. Bromine exists as two stable isotopes and has an atomic mass of 79.904. Bromine 79 makes up 50.69% of all naturally occurring bromine atoms. What is the mass of the other isotope? Show work for your calculation.

$$100 \% - 50.69 \% = 49.31\%$$
$$79.904 = (79 \times 0.5069) + (Mass \times 0.4931)$$

$$\frac{79.904 - (79 \times 0.5069)}{0.4931} = Mass = 80.8 \approx 81 \text{ amu}$$

3. Indium (In) has two stable isotopes, ¹¹³In and ¹¹⁵In, and about 80 known radioisotopes. Indium-111, having a half-life of 2.8047 days, decays by means of electron capture. If a 25 gram sample of 111 In was tested after 19.6329 days, how many half-lives have passed?

$$19.6329 \text{ days} \div 2.8047 \text{ days} = 7 \text{ half-lives have passed}$$

Bromine-78, a radioactive isotope with a half-life of 6.45 minutes, is known to undergo electron capture. How much time has passed if a sample of bromine-78 has experienced five half-lives?

$$5 \times 6.45 \text{ minutes} = 32.25 \text{ minutes}$$

5. How many half-lives will it take for 100 g of radioactive Americium-243 to decay to less than 20 grams?

$$100 \rightarrow 50 \rightarrow 25 \rightarrow 12.5$$
 3 half-lives