Unit 3A Quiz #1: Atomic Structure		Name: Block:	35 total points Date:
I. Matching: Each scientist may be us	sed <u>once</u> or <u>mo</u>		
A. James ChadwickB. Ernest RutherfordC. Democritus	D. Louis E. Neil E F. J. J. T		G. John Dalton H. Robert Millikan İ. Werner Heisenburg
F 1. Proposed the Plum Pudding Mo	del		
C 2. Argued that matter was compose	sed of "atomos"	,	
G 3. Claimed "All atoms of a given of	element are ider	ntical in mass and pr	roperties."
H 4. Performed the Oil Drop Experir	nent		
F 5. Proved that cathode rays were no	egatively charge	ed particles	
B 6. Performed the Gold Foil Experi	ment		
A 7. Bombarded beryllium atoms wi	th alpha particle	es and noticed neutra	al particles were produced.
D 8. Predicted wave functions of ele	ctron orbitals		
B 9. Experiment proved atoms have	dense positive r	nucleus	
I 10. Position and the velocity of an o	object cannot be	oth be measured exa	ctly
E11. Proposed the Planetary Model			
G12. Developed First Atomic Theory	ý		
E13. Proposed that energy is transfer	red only in cert	ain well defined qua	antities.
II. Short Answer and Fill-in-the-Blank	•		
1. The mass number of an atom is e	qual to the nun	nber of <u>protons and</u>	neutrons in the nucleus.
2. Which two subatomic particles ar	e relatively the	same size? protor	s and neutrons
3. In order for an atom to be neutra	l, <u>the number c</u>	of protons must equ	al the number of electrons.
4. Explain what isotopes are and dra	aw examples in	the space below. <u>Is</u>	sotopes are atoms that have equal number
protons but a different number o	f neutrons. 12	^{2}C ^{13}C ^{14}C	

An isotope with an atomic number of 10 and a mass number of 22 would belong to which element? Neon

7. What is the isotopic notation for an atom containing 19 protons, 20 neutrons, and 18 electrons? $^{39}_{19}K^{+1}$

How many neutrons are present in an isotope of ^{30}Si ? 16

5.

- 8. Write the complete isotopic notation for a sulfur atom with 50 subatomic particles. $\frac{34}{16}$ S
- 9. Balance the following nuclear equations:

a)
$${}^{207}_{82}Pb \rightarrow {}^{4}_{2}\alpha + \left[{}^{203}_{80}Hg \right]$$

b) ${}^{42}_{19}K \rightarrow \left[{}^{-0}_{-1}\beta \right] + {}^{42}_{20}Ca$

c)
$$\begin{bmatrix} \frac{206}{89}Ac \\ \frac{89}{89}Ac \end{bmatrix} \rightarrow \begin{bmatrix} \frac{4}{2}\alpha \\ \frac{1}{87}Fr \end{bmatrix} + \begin{bmatrix} \frac{102}{44}Ru \\ \frac{1}{44}Ru \end{bmatrix} + \begin{bmatrix} \frac{102}{44}Ru \\ \frac{1}{44}Ru \end{bmatrix}$$

III. Calculations - Must show work to earn credit.

1. An element has one stable isotope with a relative mass of 68.9257 amu at 60.4% abundance and another stable isotope with a relative mass of 70.9249 amu at 39.6% abundance. Calculate its average atomic mass to two decimal places, and identify the element using the periodic table.

$$AAM = (68.9257 \times 0.604) + (70.9249 \times 0.396) = 69.7$$

Gallium is 69.72 amu

2. Silver exists as two stable isotopes and has an atomic mass of 107.868. Silver-107 makes up 51.839% of all naturally occurring silver atoms. What is the mass of the other isotope to three significant figures?

$$100 \% - 51.839 \% = 48.161\%$$

$$107.868 = (107 \times 0.51839) + (Mass \times 0.48161)$$

$$\frac{107.868 - (107 \times 0.51839)}{0.48161} = Mass = 108.8 \ amu \approx 109 \ amu$$

3. Carbon-14, a radioactive isotope with a half-life of 5730 years, is used to date ancient artifacts. How old is an artifact, if three half-lives have occurred?

$$5730 \times 3 = 17,190 \text{ years old}$$

4. How many half-lives will it take for 150 g of radioactive Californium-252 to decay to less than 15 grams?

$$150 \rightarrow 75 \rightarrow 37.5 \rightarrow 18.75 \rightarrow 9.375$$
 4 half-lives

5. Bromine (Br) has two stable isotopes, ⁷⁹Br and ⁸¹Br, and 30 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours. If a 120 gram sample of ⁷⁷Br was tested after 285.18 hours, how many half-lives have passed?

$$285.18 \text{ hr} \div 57.036 \text{ hr} = 5 \text{ half-lives have passed}$$