Unit 3 HW #3: Electronic Structure of Atoms

1.	Fill in th	ne blanks with the appropriate terms:
	a.	A discrete quantity (often of energy) is called a quanta
	b.	Planck discovered that atoms emit energy in discrete quantities.
	C.	Electrons, like light, can behave as <u>waves</u> or as <u>particles</u>
	d.	Electrons in higher energy levels than expected are called <u>excited</u>
	e.	A packet of light waves is called a <u>photon</u>
	f.	Energy required for an electron to move up in energy level comes in the form of <u>heat</u> . Energy released as an
		electron moves back down in energy levels comes in the form oflight
	g.	The distance from peak to peak of a wave is called <u>wavelength</u>
	h.	The number of peaks that pass a given point in a given amount of time is called <u>frequency</u>
	i.	According to the <u>Heisenberg</u> Uncertainty Principle, it is impossible to know both the <u>speed</u> and
		<u>location</u> of an electron simultaneously.
	j.	A 3-D region where an electron is likely to be found is called an <u>orbital</u>
	k.	A place in atom where an electron cannot be is called a <u>node</u>
	I.	S orbitals are <u>spherical</u> in shape, come in sets of <u>1</u> , and can hold a total of <u>2</u> electrons.
	m.	
	n.	D orbitals are <u>clover leaf</u> shaped, come in sets of <u>5</u> , and can hold a total of <u>10</u> electrons.
	0.	F orbitals are <u>flower</u> shaped, come in sets of <u>7</u> , and can hold a total of <u>14</u> electrons.
	p.	There are
	q.	Any one orbital can hold at most 2 electrons. This is known as the Pauli exclusion principle. When an orbital contains 2
		electrons, they must have opposite <u>spins</u> .
	r.	According to Hund's rule, when electrons are added to equal energy orbitals, each orbital receives 1
		electron before any orbital receives a <u>2nd</u> electron.
2.	Solve th	ne following problems involving the energy of light.
	a.	A certain photon of light has a wavelength of 422 nm. What is the frequency of the light? 7.11x10 ¹⁴ Hz How much energy
		does this photon possess? 4,71x10 ⁻¹⁹ JWhat color would this light appear? violet
	b.	When neon gas at low pressure is subjected to high voltage electricity, it emits waves of light. One of the more intense
		waves in the visible spectrum has a frequency of 4.69 x 10 ¹⁴ Hz. What is the wavelength of this light in nanometers? 640
		nm Is this light visible? Yes If so, what color is it? orange
	C.	How many waves of the light described in (b) would be needed to reach a length of 1.0 yards? 1.4x106 waves
	d.	What is the energy of a photon of light with a frequency of 7.39 x 10 ²⁴ Hz? 4.90x10 ⁻⁹ JWhat is the wavelength of this
		photon? 4.06x10-8 nm
	e.	A certain light has a wavelength of 6.8 x 10 ⁻⁶ m. What is the frequency of the light? 4.4x10 ¹³ Hz What color is this light?
	f.	A photon of light has an energy of 2.84 x 10 ⁻¹⁹ J. What is the wavelength of this light? 701 nm
	g.	A photon of light has a frequency of 6.91 x 10 ¹⁴ Hz. What is the energy of this quantum of light? 4.58x10 ⁻¹⁹ J What color
		is this light? violet
	h.	Calculate the frequency of light that has a wavelength of 3.0 feet. 3x108 s-1
	i.	What is the energy of light that has a wavelength of 1.0 miles? 1.2x10 ⁻²⁸ J
	j.	Ocean waves travel at approximately 5.00 miles/hour, and the crests pass a fixed point at the rate of 16.5 waves per
		minute. What is the wavelength of ocean waves in nanometers? 8.13x109 nm

3. Application.

Watch the video at this link (https://www.youtube.com/watch?v=nPHegSull_M) and be prepared to discuss.