Unit 3 HW #2: Nuclear Chemistry

1. Classify the following isotopes as stable or unstable (nonradioactive or radioactive).

_	32 C	stab	۱,
a.	16.)	Stab	ıe

d.
$$^{164}_{66}$$
Dy stable

2. Balance the following nuclear reactions.

a.
$$^{223}_{88}$$
Ra $\rightarrow \frac{219}{86}$ Rn + $^{4}_{2}\alpha$

b.
$${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He$$

c.
$${}^{4}_{2}\alpha + {}^{14}_{7}N \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$$

d.
$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta$$

e.
$${}^{87}_{37}Rb \rightarrow {}^{87}_{38}Sr + {}^{9}_{-1e}$$

f. ${}^{209}_{84}Po \rightarrow {}^{97} \gamma + {}^{12}_{-209}$

3. Write balanced nuclear equations for the following reactions.

a. Write a nuclear equation for the alpha decay of protactinium-231.

$$^{231}_{91}$$
Pa $\rightarrow ^{4}_{2}$ He + $^{227}_{89}$ Ac

b. Write a nuclear equation for the beta decay of francium-223.

$$^{223}_{87}$$
Fr $\rightarrow ^{0}_{-1}$ e + $^{223}_{88}$ Ra

c. Write a nuclear equation for the beta decay of xenon-152.

$$^{152}_{54}$$
Xe $\rightarrow ^{0}_{-1}$ e + $^{152}_{55}$ Cs

d. Write a nuclear equation for the alpha decay of ¹⁵⁰₆₄Gd.

$$^{150}64_{Gd} \rightarrow ^{4}{}_{2}He + ^{146}{}_{62}Sm$$

e. Write a nuclear equation for the alpha decay of ¹⁴⁶₆₂Sm.

$$^{146}_{62}$$
Sm $\rightarrow ^{4}_{2}$ He + $^{142}_{60}$ Nd

f. Write a nuclear equation for the beta decay of cesium-120.

$$^{120}_{55}$$
Cs $\rightarrow ^{0}_{-1}$ e + $^{120}_{56}$ Ba

4. Solve the following half-life problems, showing all work and using correct significant digits.

a. Given that the half-life of carbon-14 is 5730 years, consider a sample of fossilized wood that, when alive, would have contained 24 g of carbon-14. It now contains 1.5 g of carbon-14. How old is the sample?

22900 years

b. With a half-life of 28.8 years, how long will it take for 1.00 g of strontium-90 to decay to 125 mg?

86.4 years

c. The half-life of cesium-137 is 30.2 years. If the initial mass of a sample of cesium-137 is 1.00 kg, how much in grams will remain after 151 years?

31.3 g

d. A 1.000 kg block of phosphorus-32, which has a half-life of 14.3 days, is stored for 100.1 days. At the end of this period, how much phosphorus-32 remains? Give your answer in grams.

7.813 g

e. A 64-g sample of germanium-66 is left undisturbed for 12.5 hours. At the end of that period, only 2.0 g remain. What is the half-life of this material?

2.5 hours

f. The half-life of sodium-5 is 1.0 minute. Starting with 1.0 kg of this isotope, how many micrograms will remain after exactly half an hour?

$0.93~\mu g$

g. What is the half-life of polonium-214 if, after 820. seconds, a 1.00 g sample decays to 31.25 mg? 164 seconds