Deep Run High School

Unit 3 Test

ID: 2744

Name:		Score:	/ 100)
Question '	1		/1	
prop	udent hypothesizes that silicon (Si) will have similar chemi perties to germanium (Ge). The periodic table supports thi othesis by indicating that –			
	silicon and germanium have similar atomic masses			
	silicon is a metal while germanium is a nonmetal			
	silicon and germanium are both members of the halogen grou	ıp		
	silicon and germanium have the same numbers of valence ele	ctrons		

Due Date: October 30, 2019

Page 1 of 25

Name:	
Question 2	/1
Which of the following is the same for both an atom of radioactive iodine and an atom of stable iodine?	
I. Mass number II. Atomic number III. Number of neutrons IV. Chemical properties V. Half life	
I and III only	
I, II, and III only	
II and IV only	
☐ IV only	
☐ V only	

Due Date: October 30, 2019

Page 2 of 25

Name:	
Question 3	/1
What process would cause thorium-230 to decay to radium-226?	
beta decay	
alpha decay	
positron decay	
gamma decay	
Question 4	/1
According to the Bohr model of the atom, a single electron from a hydrogen atom	
can jump to higher energy orbitals and fall back down again	
orbits at a permanently fixed distance from the nucleus	
exists in many different orbitals at the same time	
is located in the positively charged nucleus.	

Due Date: October 30, 2019

Page 3 of 25

Name:			
Question 5	/1		
True or False: According to Democritus, a single atom exhibits the same chemical and physical properties as the element from which it came. True			
False			
Question 6	/1		
Radioactive iodine-131, often used in cancer treatments, decays according to the following equation with a half-life of 8 days. If 1.00 µg of ¹³¹ 53I is injected into a cancer patient. Determine the amount remaining			
after 24 days.			
O.125 μg remaining			
O.333 μg remaining			
0.250 μg remaining			
0.500 μg remaining			

Due Date: October 30, 2019

Page 4 of 25

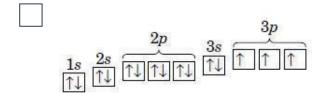
	•		·
Name:		_	
Question 7			/1
•	times for an experiment	are recorded below:	/ /
Trial #	Reaction Time		
1	30.3 sec		
2	34.7 sec		
3	28.5 sec		
The actual ex	spected reaction time was	s 31.0 seconds. The result	s were
both ac	curate and precise		
precise	but not accurate		
accurat	e but not precise		
neither	accurate nor precise		

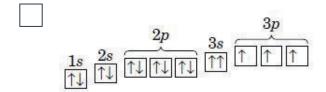
Due Date: October 30, 2019

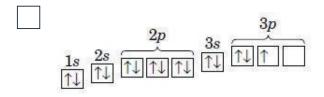
Page 5 of 25

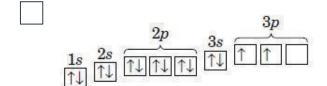
Name:	
Question 8 /1	l
If ²¹⁴ ₈₂ Pb undergoes beta decay, and then the product of this decay process undergoes another beta decay, what is the end result (in addition to a beta particle?	
212 ₈₂ Bi	
214 ₈₄ Po	
214 ₈₂ Pb	
212 ₈₃ Bi	
206 ₈₂ Pb	
Question 9 /1	ĺ
The half-life of thorium-227 is 18.72 days. How old is the sample, if 3 half lives have occured?	
56.16 days	
6.24 days	
75.67 days	
12.13 days	

Due Date: October 30, 2019


Page 6 of 25


Name:


Question 10

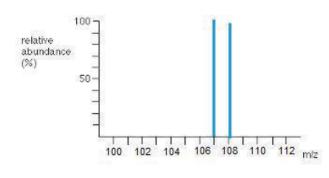

/

Which of the following orbital notations for phosphorus is correct?

ID: 2744

Due Date: October 30, 2019

Page 7 of 25


Name:	
Question 11	/1
The isotope shown below has	
$_{12}^{25}Mg^{+2}$	
12 protons, 13 neutrons, and 14 electrons	
12 protons, 13 neutrons, and 10 electrons	
25 protons, 12 neutrons, and 13 electrons	
12 protons, 25 neutrons, and 14 electrons	
Question 12	/1
Select the abbreviated electron configuration for Tin.	
\square [Xe] $5s^2 4d^{10} 5p^2$	
$[Kr] 4s^2 3d^{10} 4p^2$	
\square [Ar] 4s ² 3d ¹⁰ 4p ²	
\square [Kr] 5s ² 4d ¹⁰ 5p ²	

Due Date: October 30, 2019

Page 8 of 25

Name:		
Question	13	/1
Whic	h subatomic particle increases the stability of the nucleus?	
	electron	
	proton	
	ion	
	neutron	

The mass spectrum of which element is shown below?

☐ Hs

Question 14

L Ag

LL Au

□ Bh

ID: **2744**

Due Date: October 30, 2019

Page 9 of 25

Name	e:				
Question	า 15				/1
Use	e the word bank	below to fill-in-the	e-blanks for this se	ntence.	
lons	Atoms	Electrons	Isotopes	Protons	Neutrons
		are different form	ns of the same el	ement that	
con	tain equal nun	nbers of	but diffe	erent numbers	s of
		in their nuclei.			
Questior	n 16				/1
In 1932, beryllium atoms were bombarded with alpha particles. An unknown radiation was produced. This radiation was composed of particles with a neutral electrical charge and the approximate mass of a proton. This particle became known as the					
	neutron				
	proton				
	electron				
	isotope				

ID: **2744** Due Date: October 30, 2019 Page 10 of 25

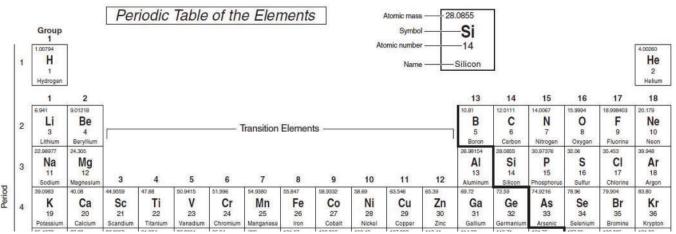
Name:		
INGIIIC.		

Question 17

/

What type of radiation occured in the nuclear reaction below?

$$^{9}_{4}$$
 Be $\rightarrow ^{9}_{4}$ Be + _____


- beta decay
- lalpha decay
- positron decay
- gamma decay

/

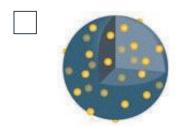
Question 18

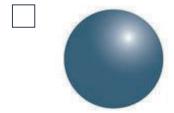
According to the periodic table an isotope of carbon always has ______ protons.

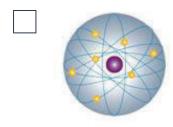
Periodic Table of the Elements For Assessments Based on the 2010 Chemistry Standards of Learning

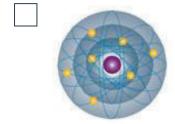
ID: 2744

Due Date: October 30, 2019


Page 11 of 25


Name: _____


Question 19

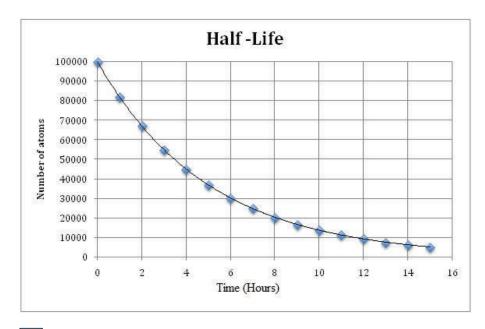

/1

Which image of the atom supports the Plum Pudding Model?

ID: **2744** Due Date: October 30, 2019

Page 12 of 25

Name:	
Question 20	/1
Oxygen can combine with carbon to form two compounds, carb monoxide and carbon dioxide. The ratio of the masses of oxyge that can combine with a given mass of carbon is 1:1 and 1:2, respectively. This is an example of	
Neils Bohr's Planetary Model	
J. J. Thomson's Plum Pudding Model	
John Dalton's First Atomic Theory	
James Chadwick's Fussion Reaction	


ID: **2744** Due Date: October 30, 2019 Page 13 of 25

Name:

Question 21

/1

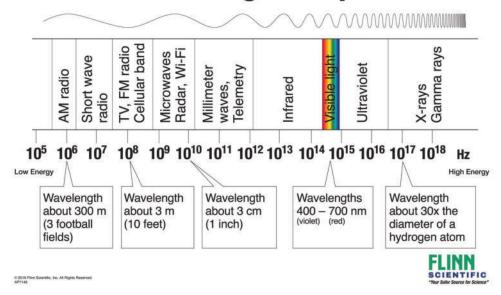
How much time has passed when two half-lives have occured?

- 3.5 hours
- 8.0 hours
- 5.5 hours
- 7.0 hours

ID: **2744** Due Date: October 30, 2019 Page 14 of 25

Name:	
Question 22	/1
A three-dimensional region around a nucleus where an electron may be found is called a(n)	
orbital	
spectra	
isotope	
nucleus	
Question 23	/1
How many half lives have occured if 300 grams of a radioactive isotope decays until 9.375 grams is remaining?	
4 half lives	
3 half lives	
5 half lives	
6 half lives	

ID: **2744** Due Date: October 30, 2019 Page 15 of 25


Name:

Question 24

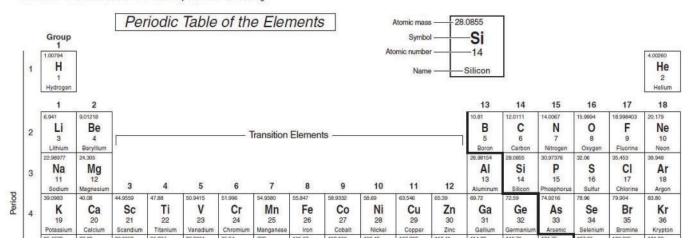
/1

According to the Electromagnetic Spectrum, which of the following has the longest wavelength?

The Electromagnetic Spectrum

Yellow Light
Red Light
Blue Light
Purple Light

ID: **2744** Due Date: October 30, 2019 Page 16 of 25


Name:	
uestion 25	/1
Choose the minimum thickness of material necessary to stop an aparticle:	alpha
three inches of lead	
three feet of concrete	
a sheet of paper	
a sheet of aluminum foil	

Question 26

/

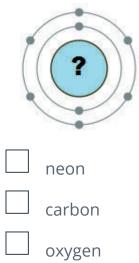
According to the periodic table, a neutral atom of nitrogen will have _____ electrons.

Periodic Table of the Elements For Assessments Based on the 2010 Chemistry Standards of Learning

ID: 2744

Due Date: October 30, 2019

Page 17 of 25


Name	e:					
Question	ı 27					/1
	atom that has sotope of whi		umber of 1	9 and a mass nu	mber of 40	would be
	Potassium (K	()				
	Argon (Ar)					
	Calcium (Ca)					
	Zirconium (Zi	r)				
Question	ı 28					/1
A hy	pothetical el	ement cons	ists of thr	ee isotopes as	shown be	low.
_	_			of the element		
		Isotope #1		30.00 amu		
		Isotope #2 Isotope #3	50.00 % 20.00 %	32.00 amu 35.00 amu		
	22.00					
	33.00 amu					
	32.00 amu					
	32.25 amu					
	31.50 amu					
	35.00 amu					

Due Date: October 30, 2019

Page 18 of 25

Name:		-		
Overting 20				/1
Question 29				/1

Which element is represented by the Bohr Model below:

sulfur

ID: **2744** Due Date: October 30, 2019 Page 19 of 25

Name:	
Question 30	/1
Which one of the following statements is FALSE?	
The electrons occupy a very large volume compared to the nuclei	JS
The protons and neutrons in the nucleus are very tightly packed	
Almost all of the mass of the atom is concentrated in the nucleus	
The number of protons and neutrons is always the same in a neu	itral atom
All four statements are true	
Question 31	/1
Enter the proper number of significant figures into the first bl	ank and

Higher frequencies allow faster transmission of data through WI FI, also known as bandwidth. Therefore, a frequency of 5 $\times 10^9$ Hz is the most desired for data connections. Calculate the amount of energy required for this amount of bandwidth using Plank's constant.

E = hv (Plank's constant, h =
$$6.626 \times 10^{-34} \text{ m}^2 \text{ kg/s}$$
)

ID: 2744

Due Date: October 30, 2019

Page 20 of 25

Name:	
Question 32	/1
The charge to mass ratio of a electron was discovered using the	
Oil Drop experiment by Millikan	
Cathode Ray Tube experiment by J.J. Thompson	
Gold Foil experiment by Rutherford	
Fussion Reaction by James Chadwick	
Question 33	/1
Sugar dissolving in water is an example of	
a chemical property.	
a physical property.	
a physical change.	
a chemical change.	

ID: **2744** Due Date: October 30, 2019 Page 21 of 25

Name:	
Question 34	/1
Which experiment proved that positively charged particles were located in the nucleus?	
Gold Foil Experiment	
Oil Drop Experiment	
Cathode Ray Experiment	
Fussion Reaction Experiment	
Question 35	/1
Carbon dioxide sublimes at -78.4 °C. This is an example of	
a physical property	
a chemical property	

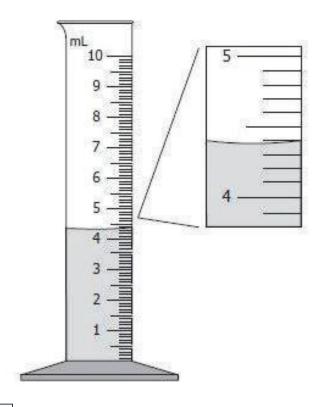
ID: **2744** Due Date: October 30, 2019 Page 22 of 25

Name:	
Question 36	/1
A pH indicator changes color when dry ice is added to water, ir the solution has become acidic. Is this a physical change or a change?	_
physical change	
chemical change	
Question 37	/1
A 16 gram sample of Uranium-238 takes 13.4 billion years to de 2 grams remaining. What is the half life of this isotope?	ecay to
6.7 billion years	
40.2 billion years	
4.46 billion years	
17.8 billion years	

ID: **2744** Due Date: October 30, 2019 Page 23 of 25

Name:	
Question 38	/1
Which of the following correctly lists the number of protons, electrons, and neutrons in a ⁵⁹ 28Ni atom?	
28, 28, 28	
28, 28, 31	
28, 28, 59	
59, 59, 28	
59, 59, 31	
Overtire 20	/1
Question 39	/1
Gold is called a noble metal because it does not corrode like	other metals.
physical property	
chemical property	

Due Date: October 30, 2019


Page 24 of 25

Name:		

Question 40

/1

What is the volume of the water in this graduated cylinder?

- ☐ 4.40 ml
- △ 4.39 ml
- ☐ 4.04 ml
- ☐ 5.61 ml

ID: 2744

Due Date: October 30, 2019

Page 25 of 25