Unit 2A Test Review

Mixtures and Pure Substances.

- A. Identify each as a pure substance (PS), homogeneous mixture (HM), or a heterogeneous mixture (HT).

 - 2. Dr. Pepper _____
 - 3. Beer _____
 - 4. Trail mix ____
 - Oatmeal raison cookie

- brass _____
- 7. Air _____
- 8. Oxygen _____
- 9. Sodium chloride _____ 10. Potting soil _____
- B. Identify each pure substance as an element or a compound.
 - Carbon dioxide
 - 2. Mercury _____
 - 3. H₂ _____
 - 4. H₂O _____
 - 5. S₈ _____

- 6. Hydrogen peroxide
- 7. Ca _____
- 8. Iron _____
- 9. Iron oxide _____
- 10. CCl₄ _____

II. Separation of Mixtures

- 1. A mixture of sand and salt water could be separated by ______.
- 2. The components of gasoline could be separated by . .
- 3. The components of green tea could be separated by their color using ______

III. Properties of Matter

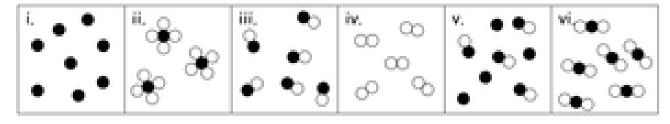
- A. Identify each property as intensive (I) or extensive (E).
 - 1. Density _____

3. pH _____

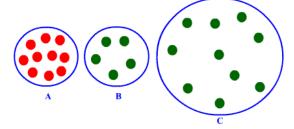
5. boiling point _____

2. Mass _____

4. length _____


6. temperature _____

- B. Identify each property or change as chemical (C) or physical (P).
 - 1. Ability to react _____
 - 2. Fermentation _____
 - 3. Evaporation _____
 - 4. Sublimation


- 5. Color change _____
- 6. Shredding paper _____
- 7. Melting _____
- 8. Burning

- 9. Length _____
- 10. Rusting _____

IV. Particle Diagrams

- 1. Label each box as an element, compound, molecules, homogeneous or heterogeneous mixture.
- 2. Take the contents of box (ii) and show it undergoing a chemical change.
- 3. Take the contents of box (iii) and show it undergoing a physical change.
- 4. If the contents of box (i) are at 25 C, what would it look like at 0 C?
- 5. Compare the relative densities of samples a, b, and c
- 6. Draw three particle diagrams for water, one as a solid, one as a liquid, and one as a gas.

10. 42.5°C = K

V. Temperature

°F = 1.8°C + 32 $^{\circ}$ C = ($^{\circ}$ F-32)/1.8 °C + 273 = K

- 415 K = ____ °C 1. 2. 62.14°C =___ F
- 4. 0°C = ___ K 5. 25 K = ___ °C
- 7. 238 K = ___ °C 8. 700. °C = ___ °F

- 3. 0 K = ___ °F
- 6. 1154 °C = ___ K
- 9. 98.6°F = K

		nsity The mass of a rectangular block is 45 g. If the block is measured and found to be 1.5 in per side, what is the density of the block in g/cm ³ ? Hint: watch units!
	2.	$0.98~kg$ of aluminum is placed in $100.0~mL$ of water. If the density of aluminum is $0.27~g/cm^3$, what will the final volume of water be after the aluminum is submerged?
	3.	A cylindrical bar of gold that is 1.5 in high and 0.25 in in diameter has a mass of 23.1984 g as determined by an analytical balance at 303 K. An empty graduated cylinder is weighed on a triple beam balance and has a mass of 73.47 g. After pouring a small amount of a liquid (also at 303 K) into the graduated cylinder, the mass is 79.16 g. When the gold cylinder is placed in the graduated cylinder (the liquid covers the top of the gold cylinder), the volume indicated on the graduated cylinder is 8.5 mL.
		(a) What is the density of the gold cylinder at 303 K?
		(b) What is the density of the liquid at 303 K?
′ II.	Ene	ergy
	1.	An process releases heat. The sign of the heat will be and the container will feel
	2.	An process absorbs heat. The sign of the heat will be and the container will feel
	3.	Evaporation is an example of an process. Burning is an example of an process.
	4. A	15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from 25°C to 175°C. Calculate the specific heat capacity of iron.

5. How many joules of heat are needed to raise the temperature of 10.0 g of aluminum from 55°C to 22 C, if the specific heat of aluminum is $0.90 \text{ J/g}^{\circ}\text{C}$?