Thermochemistry Worksheet

Specific Heat Capacity Equation: q = m · Cp · ΔT

Heat transferred or absorbed = mass \times specific heat \times (T_{final} - T_{initial})

1) Calculate the amount of energy required to raise the temperature of 145 grams of water from 22.3°C to 75°C. (Specific Heat of Water = $4.184 J/g^{\circ}$ C)

2) The specific heat capacity of iron is 0.45 J/ g·C. If 47 Joules of energy is required to raise the temperature of a sample of iron from 25°C to 90° C, what is the mass of the sample?

3) A 35.2 gram sample requires 1251 Joules of energy to heat the sample by 25°C. What is the specific heat capacity of the sample?

Enthalpy, Entropy, and Gibb's Free Energy Problems:

1.) Calculate the Enthalpy (ΔH) required to react ammonia with oxygen to form nitric oxide gas and water based on the reaction below. Use the values on the chart to calculate ΔH = **Products** – **Reactants**. Is the reaction exothermic or endothermic?

$$4 NH_3(g) + 5 O_2(g) = 4 NO(g) + 6 H_2O(g)$$

2.) Calculate the Entropy (ΔS) change for the reaction in Problem #1. Use the values on the chart to calculate ΔS = Products – Reactants.

$$4 NH_3(g) + 5 O_2(g) = 4 NO(g) + 6 H_2O(g)$$

3.) Which of the following processes will lead to an increase in the entropy of the system?

a.)
$$N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$$

b.)
$$H_2O(I) \rightleftharpoons H_2O(g)$$

c.)
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

d.) NH₄NO₃(s) + H₂O(
$$I$$
) \rightarrow NH₄⁺ (aq) + NO₃⁻ (aq)

4.) Use the Gibb's Free Energy equation ΔG = ΔH - TΔS to determine if the reaction in Problem #1 will be spontaneous at STP. (NOTE: Gibb's Free Energy requires units to be in kilojoules!)

5.) Use the Gibb's Free Energy equation $\Delta G = \Delta H - T\Delta S$ to determine the reaction below will be spontaneous at STP. Assume Enthalpy (ΔH) = 30.91 kJ/mol and Entropy (ΔS) = 93.2 J/mol·K.

$$Br_2(I) \rightarrow Br_2(g)$$