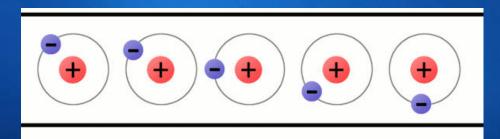
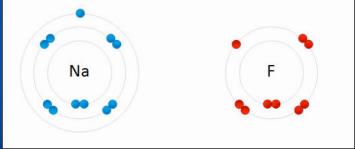

The Science of Metals

Central Virginia Blacksmith Guild

Metals on the Periodic Table

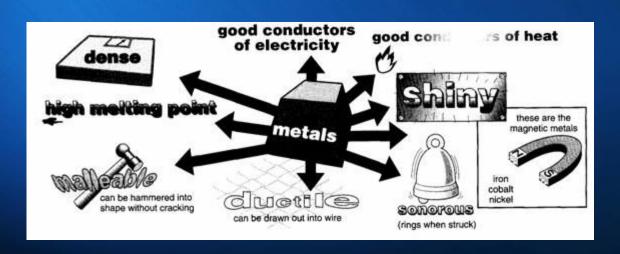


Appearance of Metals



Chemical Properties of Metals

- Contain a "sea of electrons"
- Metals react with oxygen, water, and acids
- Metals ions lose electrons


The "sea of electrons" allows metals to conduct electricity through wires.

Metals transfer electrons to nonmetals to form ionic bonds.

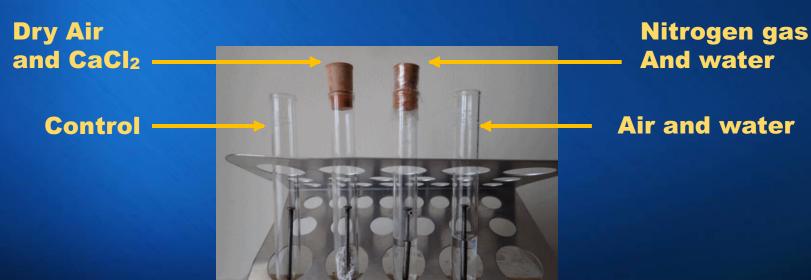
Physical Properties of Metals

- Good conductors of electricity and heat
- Solid at room temperature
- High melting and boiling points
- Luster shiny appearance

Types of Metals

Ferrous Metals

- Contain iron
- Magnetic
- Corrosive


Non-Ferrous Metals

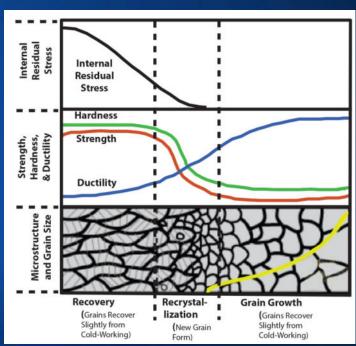
- Do not contain iron
- Not magnetic
- Resist corrosion

Types of Oxidation

- Metal oxides include rust and tarnish
- Metals react with oxygen from the air, from water, and from acids

Thermal Radiation

Metal glows producing electromagnetic waves when its heated


Industrial Kiln

 Metal can be poured into molds and cooled into specific shapes

Work Hardening Metal

- Heat overcomes the intermolecular forces
- Plastic deformation the hot metal can be stretched and folded
- Cooling locks the crystals in place
- Smaller grains improve the strength of the metal

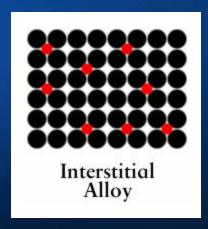
Heat Treating Metals

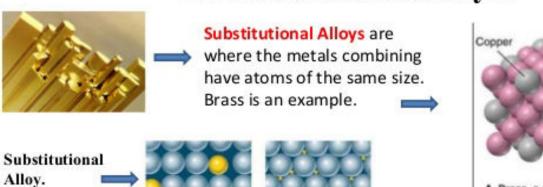
 Quenching – cools rapidly; ferrous gets harder and non-ferrous gets softer

Heat Treating Metals

 Annealing – cools slowly in order to give the crystals time to properly align

Heat Treating Metals


 Tempering — when metal is heated slowly until it glows red hot, then it is quenched and reheated at a lower temperature; increases ductility but decreases strength


Metal Alloys

- Homogeneous mixture of metals
- Improves chemical and physical properties
- Substitutional alloys atoms that are about the same size replace original atoms
- Interstitial alloys smaller atoms fit in between

Classification of Alloys

A Brass, a substitutional alloy

Interstitial Alloys are where one of the alloying elements combining has atoms of smaller size. Steel is an example. Carbon atoms are much smaller and fit into the gaps in the Iron atoms.

Interstitial

Alloy.

Carbon Iron

B Carbon steel, an interstitial alloy

Heat Treating Steel Lab

Type of Treatment	Method of Treatment	Strength of Bobby Pin
None (Control)	None (test as is)	Sturdy, flexible, high resistance, does not break
Annealing	Heat to red hot, cool slowly in air	Soft and flexible, no resistance, does not break
Quenching	Heat to red hot, cool quickly in water	Brittle, hard, breaks easily
Tempering	Heat to red hot, cool quickly in water, then heat at lower temp and cool slowly in air	Sturdy, flexible, medium resistance, does not break