Specific Heat Worksheet $(m)(\Delta T)(C_{sp})=Q$

l.	gram of a substance by 1 degree kelvin
2.	is the temperature at which all molecular motion ceases
3.	process is a change in matter in which energy is absorbed
4.	process is a change in matter in which energy is released
5.	What is the specific heat of a substance that absorbs 2500 joules of heat when a sample of 100 g of the substance increases in temperature from 10 °C to 70°C?
5.	If 200 grams of water is to be heated from 24.0°C to 100.0°C to make a cup of tea, how much heat must be added? The specific heat of water is 4.18 J/g·C
7.	How many grams of water would require 2200 joules of heat to raise its temperature from 34°C to 100°C? The specific heat of water is 4.18 J/g·C
8.	A block of aluminum weighing 140 g is cooled from 98.4°C to 62.2°C with the release of 1080 joules of heat. From this data, calculate the specific heat of aluminum.
9.	100.0 mL of 4.0°C water is heated until its temperature is 37°C. If the specific heat of water is 4.18 J/g°C, calculate the amount of heat energy needed to cause this rise in temperature.
10	A total of 54.0 joules of heat are absorbed as 58.3 g of lead is heated from 12.0°C to 42.0°C From these data, what is the specific heat of lead?
11	.The specific heat of wood is 2.03 J/g⋅°C. How much heat is needed to convert 550 g of wood at -15.0°C to 10.0°C?
12	.What is the total amount of heat needed to change 2.25 kg of silver at 0.0°C to 200.0°C? The specific heat of silver is 0.129 J/g·°C
13	.Granite has a specific heat of 800 J/g·°C. What mass of granite is needed to store 150,000 J of heat if the temperature of the granite is to be increased by 15.5°C?

14.A 55 kg block of metal has an original temperature of 15.0°C and 0.45 J/g·°C. What will be the final temperature of this metal if 450 J of heat energy are added?

- 15. Object A specific heat is 2.45 J/g·°C and object B specific heat is 0.82 J/g·°C. Which object will heat up faster if they have the same mass and equal amount of heat is applied? Explain why.
- 16. When a 120 g sample of aluminum (Al) absorbs 9612 J of energy, its temperature increases from 25°C to 115°C. Find the specific heat of aluminum.
- 17. 25.0 g of mercury is heated from 25°C to 155°C, and absorbs 455 joules of heat in the process. Calculate the specific heat capacity of mercury.
- 18. What is the specific heat capacity of silver metal if 55.00 g of the metal absorbs 47.3 **calories** of heat and the temperature rises 15.0°C?
- 19. If a sample of chloroform is initially at 25°C, what is its final temperature if 150.0 g of chloroform absorbs 1.0 **kilojoules** of heat, and the specific heat of chloroform is 0.96 J/g°C?

Temperature Conversion

$$K = {}^{\circ}C + 273$$
 ${}^{\circ}F = (9/5 \times {}^{\circ}C) + 32$ ${}^{\circ}C = K - 273$ ${}^{\circ}C = 5/9 ({}^{\circ}F - 32)$

Convert the following to Celsius

1)	32 K	 4) 1020 K	

7) 350° F _____

8) 0° K _____

9) 100° F _____

Convert the following to Kelvin

13) 70° F

14) -150° C _____

15) 400° F _____