Deep Run High School

CHEMISTRY I: 1(A), 5(A), 7(A)

Unit 10 Test

Instructor: Jennifer Krug

ID: 3647

Name: _____

Score:

/ 100

Question 1

What is the equilibrium constant for the combustion reaction below?

$$2 \; C_4 H_{10 \; (I)} + \; 13 \; O_{2(g)} \; \rightarrow \; 8 \; CO_{2(g)} + \; 10 \; H_2 O_{\; (g)}$$

$$K_{eq} = \frac{\left[C_4 H_{10}\right]^2 \left[O_2\right]^{13}}{\left[CO_2\right]^8 \left[H_2 O\right]^{10}}$$

$$K_{eq} = \frac{8 [CO_2] + 10 [H_2O]}{2 [C_4H_{10}] + 13 [O_2]}$$

$$K_{eq} = \frac{[CO_2]^8 \ [H_2O]^{10}}{[O_2]^{13}}$$

$$K_{eq} = \frac{\left[C_4 H_{10}\right]^2 \left[C O_2\right]^8}{\left[O_2\right]^{13} \left[H_2 O\right]^{10}}$$

Name:

Question 2

/1

What is the correct equilibrium expression for the reaction shown below:

$$BaCl_{2(aq)} + Na_2SO_{4(aq)} \rightleftharpoons BaSO_{4(s)} + 2 NaCl_{(aq)}$$

$$Keq = \frac{[BaCl_2][Na_2SO_4]}{[NaCl]^2}$$

$$Keq = \frac{[NaCl]^2}{[BaCl_2][Na_2SO_4]}$$

$$Keq = \frac{[BaCl_2] [Na_2SO_4]}{[BaSO_4] [NaCl]^2}$$

$$Keq = \frac{[BaSO_4] [NaCl]^2}{[BaCl_2] [Na_2SO_4]}$$

$$Keq = \frac{[BaSO_4] [NaCl]^2}{[BaCl_2] [Na_2SO_4]}$$

Name:			

/1

Which of the following salts is the <u>least</u> soluble in water at 25 °C?

Solubility Pro	oducts @ 25°C
Substance	K _{sp}
MnCO ₃	1.82×10^{-11}
NiCO ₃	6.61×10^{-9}
PbCl ₂	1.62×10^{-5}
Pbl ₂	1.39×10^{-8}

- ☐ MnCO₃
- PbCl₂
- Pbl₂
- ☐ NiCO₃

ID: 3647

Name: _			
Question 4		/1	
Whicl	h of the following exhibits the greatest decrease in entropy?		
	$H_2O(s) \rightarrow H_2O(g)$		
	$H_2O(I) \rightarrow H_2O(g)$		
	$H_2O(I) \rightarrow H_2O(s)$		
	$H_2O(s) \rightarrow H_2O(l)$		
Question 5		/1	
Whicl	h of the following will exhibit the fastest rate of reaction?		
	Adding a whole antacid tablet to a solution of 1.0 M HCl		
	Adding powdered antacid tablet to a solution of 1.0 M HCl		
	Adding two antacid tablets to a solution of 1.0 M HCl		
	Adding broken pieces of an antacid tablet to a solution of 1.0 M HCl		

ID: **3647** Page 4 of 15

Name			
Question	6		/1
All	of the following are characteristics of a catalyst EXCEPT		
	A catalyst can either be a reactant or a product in a chemical react	ion.	
	A catalyst is chemically unchanged at the end of the reaction.		
	A catalyst can be used to increase the rate of a chemical reaction.		
	A catalyst lowers the activiation energy by bringing the reactants to	ogether.	
Question	7		/1
	ch of the following will cause an increase in temperature inside reaction chamber?		
N _{2 (}	$_{\rm g)}$ + O _{2 (g)} + Heat \rightleftharpoons 2 NO (g)		
	Removing the nitrogen gas.		
	Adding oxygen gas.		
	Increasing the pressure.		
	Removing nitrogen monoxide gas.		

ID: **3647** Page 5 of 15

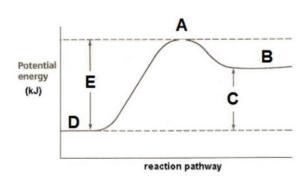
Name:	
Question 8 Which of the following will cause a <u>decrease</u> in the equilibrium	/1
concentration of Cl ₂ gas?	
$PCl_{5(g)}$ + heat $\stackrel{\longrightarrow}{\leftarrow}$ $PCl_{3(g)}$ + $Cl_{2(g)}$	
The removal of PCl ₃ gas	
A decrease in temperature	
An increase in temperature	
The addition of PCI ₅ gas	
Question 9	/1
Which of the following changes will occur when carbon monoxide gas is added to the reaction chamber?	
$CH_{4(g)} + H_2O_{(g)} \stackrel{\longrightarrow}{\longleftarrow} CO_{(g)} + 3H_{2(g)}$	
No change will occur.	
Hydrogen gas will increase.	
Methane gas will increase.	
Water vapor will decrease.	

ID: **3647** Page 6 of 15

Name:	
Question 10	/1
For which set of values of ΔH and ΔS will a reaction be spontaneous (thermodynamically favorable) at all temperatures? $\Delta H = +10 \text{ kJ/mol}; \ \Delta S = +5 \text{ J/K mol}$ $\Delta H = -10 \text{ kJ/mol}; \ \Delta S = -5 \text{ J/K mol}$ $\Delta H = +10 \text{ kJ/mol}; \ \Delta S = -5 \text{ J/K mol}$ $\Delta H = -10 \text{ kJ/mol}; \ \Delta S = +5 \text{ J/K mol}$	
Question 11	/1
For an exothermic reaction,	
\triangle G is always positive.	
\triangle H is always negative.	
Δ S is always positive.	
All the above.	
Question 12	/1
How many calories are in 100.0 Joules? (Show your answer using the proper number of significant figures.)	

ID: **3647** Page 7 of 15

	Name:		
Qι	uestion 13		/1
	According to the Law of Energy Conservation, if the heat energy absorbed equals +250 calories, then the heat energy transferred will equal calories.	ual	
Qι	uestion 14		/1
	Which equation shows the correct way to calculate the enthalpy?		
	\triangle H = Products + Reactants		
	$\triangle H = Products \div Reactants$		
	Δ H = Products - Reactants		
	\triangle H = Products x Reactants		


ID: **3647** Page 8 of 15

Name: _____

Question 15

/1

Which letter represents the forward activation energy?

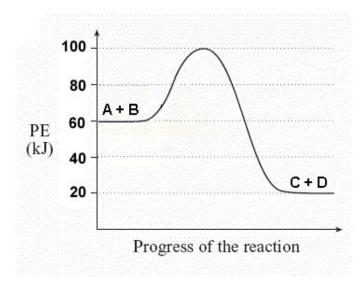
Question 16

/

Which of the following is considered an endothermic reaction?

$$2 C_{(s)} + O_{(g)} \rightarrow 2 CO_{(g)} + 221 \text{ kJ}$$

$$2 \text{ H}_2\text{O}_{(l)} + 572 \text{ kJ} \rightarrow 2 \text{ H}_{2(g)} + 1 \text{ O}_{2(g)}$$


$$1 H_{2(g)} + 1 Br_{2(l)} \rightarrow 2 HBr_{(g)} + 72.8 kJ$$

Name:

Question 17

/1

Based on the diagram below, this reaction would be classified as

- an endothermic reaction
- a precipitation reaction
- a syntheis reaction
- an exothermic reaction

ID: **3647** Page 10 of 15

Name:	
Question 18 Of the following reactions, which involves the largest decrease in entropy? $Pb(NO_3)_3(s) + 2 KI(s) \rightarrow PbI_2(s) + 2 KNO_3(s)$	/1
$C_{3}H_{8}(g) + O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(g)$ $2 CO(g) + O_{2}(g) \rightarrow 2 CO_{2}(g)$ $4 La(s) + 3 O_{2}(g) \rightarrow 2 La_{2}O_{3}(s)$ $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$	
Question 19 $ Calculate the entropy for the following reaction at 25 °C. \\ C_2H_5OH (I) \rightarrow C_2H_4 (g) + H_2O (g) \qquad \Delta H = 45 \text{ kJ/mol} $	/1
(Notice: $\Delta S = \Delta H/T$ but has units of J/mol·K so make sure units match.) 1800 J/mol·K	

151 J/mol·K

165 J/mol·K

1.8 J/mol·K

ID: **3647** Page 11 of 15

tion 20									
h. 5e									
		Мо	lar Hea	at of Vapor	izatio	n			
			H ₂ O	40.7 kJ/m	ole				
			NH ₃	40.7 kJ/m 23.4 kJ/m	ole				
have st set up s collide		olecular attradesive nuclear for	ctions	s of vaporization.	The best i	nterpret	ation, at th	ne molecul	lar level, is that
	ar Heat of Fu int for Selec Melting Point (°C)								
Mola Melting Po	int for Selec	ted Substan							
Mola Melting Po Substance	Melting Point (°C)	∆H _{fus} (k)/r							
Molting Po Substance	Melting Point (°C) -190	ΔH _{fus} (k)/r							
Molting Po Substance Argon Benzene	Melting Point (°C) -190 5.5	ΔH _{fus} (kJ/r 1.18 9.87							

ID: **3647** Page 12 of 15

Name:	
Question 22	/1
The compounds ethyne, ethene and ethane contain, respectively C-C bonds. What is the expected sequence of carbon-carbon be enthalpies?	
Bond lengths: $C=C > C-C$; bond enthalpies: $C=C < C-C$.	
Bond lengths: $C=C < C-C$; bond enthalpies: $C=C > C-C$.	
Bond lengths: $C=C < C-C$; bond enthalpies: $C=C < C-C$.	
Bond lengths: $C=C > C=C > C-C$; bond enthalpies: $C=C > C=C > C-C$.	
Question 23	/1
Calculate the $\Delta Hrxn$ using the given bond energies:	
$CH_4(g) + 2 H_2O(g) \rightarrow 4 H_2(g) + CO_2(g)$	
Average Bond Energies	
H - H 436 kJ/mol	
O - H 464 kJ/mol	
H - C 414 kJ/mol	
C = O 799 kJ/mol	
-357 kJ/mol	
-170 kJ/mol	
-2110 kJ/mol	
+170 kJ/mol	

ID: **3647** Page 13 of 15

Name:			

Calculate the value of ΔH° for the reaction below:

$$2 \text{ Al}_{(s)} + 1 \text{ Fe}_2 O_3_{(s)} \rightarrow 2 \text{ Fe}_{(s)} + 1 \text{ Al}_2 O_3_{(s)}$$

$$2 \text{ Al}_{(s)} + 1\% \text{ O}_{2 (g)} \rightarrow 1 \text{ Al}_{2} \text{O}_{3 (s)}$$
 $\Delta \text{H}^{\circ} = -1601 \text{ kJ}$

$$\Delta H^{\circ} = -1601 \text{ kJ}$$

2 Fe
$$_{(s)}$$
 + 1½ $O_{2(g)} \rightarrow$ 1 Fe $_2O_{3(s)}$ ΔH° = -821 kJ

$$\Delta H^{\circ} = -821 \text{ kJ}$$

-2422 kJ

/

Calculate the value of ΔH° for the reaction: 2 F_{2 (g)} + 2 H₂O $_{(l)} \rightarrow$ 4 HF $_{(g)}$ + O_{2 (g)}.

$$H_{2 (g)} + F_{2 (g)} \rightarrow 2 HF_{(g)}$$
 $\Delta H^{\circ} = -542.2 \text{ kJ}$

$$2 H_{2 (g)} + O_{2 (g)} \rightarrow 2 H_{2}O_{(I)}$$
 $\Delta H^{\circ} = -571.6 \text{ kJ}$

- -1084 kJ
- -1656 kJ
- -512 kJ
- ☐ -1114 kJ

Instructions for grading: Grade each question and tally the score to obtain the total test points. If the factor does not equal 1, multiply the total points by the factor to obtain the student's final score.

Question 1

What is the equilibrium constant for the combustion reaction below?

$$2 C_4 H_{10 (I)} + 13 O_{2(g)} \rightarrow 8 CO_{2(g)} + 10 H_2 O_{(g)}$$

$$K_{eq} = \frac{[CO_2]^8 [H_2 O]^{10}}{[O_2]^{13}}$$

1 possible pts.

Question 2

What is the correct equilibrium expression for the reaction shown below:

$$BaCl_{2(aq)} + Na_2SO_{4(aq)} \rightleftharpoons BaSO_{4(s)} + 2 NaCl_{(aq)}$$

$$Keq = \frac{[NaCl]^2}{[BaCl_2][Na_2SO_4]}$$

1 possible pts.

ID: **3647** Page 1 of 12

Which of the following salts is the <u>least</u> soluble in water at 25 °C?

Solubility Pro	oducts @ 25°C
Substance	K _{sp}
MnCO ₃	1.82×10^{-11}
NiCO ₃	6.61×10^{-9}
PbCl ₂	1.62×10^{-5}
Pbl ₂	1.39×10^{-8}

MnCO ₃

Question 4

Which of the following exhibits the greatest decrease in entropy?

ID: **3647** Page 2 of 12

¹ possible pts.

¹ possible pts.

Which of the following will exhibit the fastest rate of reaction? Adding powdered antacid tablet to a solution of 1.0 M HCl 1 possible pts. Question 6 All of the following are characteristics of a catalyst *EXCEPT* A catalyst can either be a reactant or a product in a chemical reaction. 1 possible pts. Question 7 Which of the following will cause an increase in temperature inside the reaction chamber? $N_{2(g)} + O_{2(g)} + Heat \rightleftharpoons 2 NO_{(g)}$ Removing the nitrogen gas. 1 possible pts.

ID: **3647** Page 3 of 12

Which of the following will cause a $\underline{\textit{decrease}}$ in the equilibrium concentration of Cl_2 gas?

$$PCI_{5(g)} + heat \stackrel{\longrightarrow}{\leftarrow} PCI_{3(g)} + CI_{2(g)}$$

A decrease in temperature

1 possible pts.

Question 9

Which of the following changes will occur when carbon monoxide gas is added to the reaction chamber?

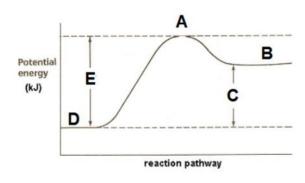
$$CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)}$$

Methane gas will increase.

1 possible pts.

ID: **3647** Page 4 of 12

Answer Key Possible Points: 25 Factor: x4.00 Test Value: 100


Question 10
For which set of values of ΔH and ΔS will a reaction be spontaneous (thermodynamically favorable) at all temperatures? $\Delta H = -10 \text{ kJ/mol}$; $\Delta S = +5 \text{ J/K mol}$
1 possible pts.
Question 11
For an exothermic reaction,
\triangle H is always negative.
1 possible pts.
Question 12
How many calories are in 100.0 Joules? (Show your answer using the proper number of significant figures.) 23.92, 23.92cal, 23.92 cal, 23.92calories, 23.92 calories
1 possible pts.

ID: **3647** Page 5 of 12

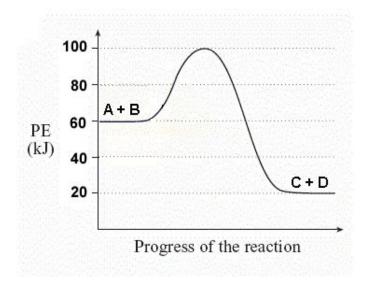
Question 15	
According to the Law of Energy Conservation equals +250 calories, then the heat energy -250, -250, -250 calories, -250 calories, -250 cal	
1 possible pts.	
Question 14	
Which equation shows the correct way to $\triangle H = \text{Products} - \text{Reactants}$	calculate the enthalpy?
1 possible pts.	

ID: **3647** Page 6 of 12

Which letter represents the forward activation energy? _e, E

1 possible pts.

Question 16


Which of the following is considered an endothermic reaction?

2 H₂O_(I) + 572 kJ
$$\rightarrow$$
 2 H_{2(g)} + 1 O_{2(g)}

1 possible pts.

ID: **3647** Page 7 of 12

Based on the diagram below, this reaction would be classified as

an exothermic reaction

1 possible pts.

Question 18

Of the following reactions, which involves the largest decrease in entropy?

 $4 \text{ La}(s) + 3 \text{ O}_2(g) \rightarrow 2 \text{ La}_2\text{O}_3(s)$

1 possible pts.

ID: **3647** Page 8 of 12

Calculate the entropy for the following reaction at 25 °C.

$$C_2H_5OH (I) \rightarrow C_2H_4 (g) + H_2O (g)$$
 $\Delta H = 45 \text{ kJ/mol}$

(Notice: $\Delta S = \Delta H/T$ but has units of J/mol·K so make sure units match.)

□ 151 J/mol·K

1 possible pts.

Question 20

Ch. 5e

Molar Heat of Vaporization

H ₂ O	40.7 kJ/mole
NH ₃	23.4 kJ/mole

Water and ammonia have different molar heats of vaporization. The best interpretation, at the molecular level, is that water molecules -

ı					
ı	have	stronger	intermo	lecular	attractions

1 possible pts.

ID: **3647** Page 9 of 12

Molar Heat of Fusion and Melting Point for Selected Substances

Substance	Melting Point (°C)	ΔH _{fus} (kJ/mol)	
Argon -190		1.18	
Benzene	5.5	9.87 2.29 6.01	
Mercury	-39		
Water	0		

Which substance in the table above will release the greatest amount of heat when 1.00 mol is frozen?

benzene

1 possible pts.

Question 22

The compounds ethyne, ethene and ethane contain, respectively, C≡C, C=C and C−C bonds. What is the expected sequence of carbon-carbon bond lengths and bond enthalpies?

Bond lengths: C=C < C-C; bond enthalpies: C=C > C-C.

1 possible pts.

ID: 3647 Page 10 of 12

Calculate the $\Delta \mbox{Hrxn}$ using the given bond energies:

$$\mathsf{CH}_4(\mathsf{g}) + \mathsf{2}\;\mathsf{H}_2\mathsf{O}(\mathsf{g}) \to \mathsf{4}\;\mathsf{H}_2(\mathsf{g}) + \mathsf{CO}_2(\mathsf{g})$$

Average Bond Energies

H - H 436 kJ/mol

O - H 464 kJ/mol

H - C 414 kJ/mol

C = O 799 kJ/mol

+170 kJ/mol

1 possible pts.

ID: **3647** Page 11 of 12

Calculate the value of ΔH° for the reaction below:

$$2 \text{ Al}_{(s)} + 1 \text{ Fe}_2 O_{3(s)} \rightarrow 2 \text{ Fe}_{(s)} + 1 \text{ Al}_2 O_{3(s)}$$

$$2 \text{ Al}_{(s)} + 1\frac{1}{2} O_{2(g)} \rightarrow 1 \text{ Al}_{2}O_{3(s)}$$
 $\Delta H^{\circ} = -1601 \text{ kJ}$

2 Fe
$$_{(s)}$$
 + 1½ O_{2 (g)} \rightarrow 1 Fe₂O_{3 (s)} ΔH° = -821 kJ

Question 25

Calculate the value of ΔH° for the reaction: 2 F_{2 (g)} + 2 H₂O $_{(l)} \rightarrow$ 4 HF $_{(g)}$ + O₂ $_{(g)}$

$$H_{2 (g)} + F_{2 (g)} \rightarrow 2 HF_{(g)}$$
 $\Delta H^{\circ} = -542.2 \text{ kJ}$

$$2 H_{2 (g)} + O_{2 (g)} \rightarrow 2 H_{2}O_{(I)}$$
 $\Delta H^{\circ} = -571.6 \text{ kJ}$

¹ possible pts.

¹ possible pts.