Write the name of each molecule, and draw its Lewis Dot Structure. Label the bond angles, VSEPR shapes, and intermolecular forces. If Resonance Structures exist, draw 2 or 3 most stable structures.

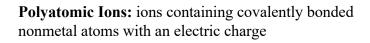
 Br_2

HBr

 H_2O

 H_2O_2

CH₄

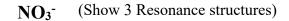

 NH_3

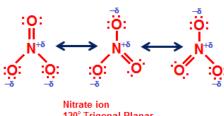
CO

 CO_2

 O_2

O₃ (Show 2 resonance structures)




Acids: compounds that occur when a positive hydrogen ion is attracted to the lone pair electrons of an anion through hydrogen bonding.

120" Trigonal Planar at O=N-O

105° Bent at N-O-H

Hydrogen bonding

120° Trigonal Planar ion - ion attraction

 NO_2^-

$$HNO_2$$

HNO₃

$$SO_4^{2-}$$

 H_2SO_4

CO_3^{2-}	(Show 3 Resonance Structures)	H_2CO_3
PCl ₃		BCl ₃
CH3COC (Label all :	OH 3 shapes, angles, and IMFs)	CH ₃ OH (Label both shapes, angles, and IMFs)
1-butano (Label both	ol h shapes, angles, and IMFs)	2-butanol (Label both shapes, angles, and IMFs)
XeF4		PCl ₅

Examples	Geometry	Arrangement of electron pairs*	Number of lone pairs	Number of bonding pairs	Total number of electron pairs	Class of molecule	or More Lone Pairs
SO ₂	Bent	B A B Trigonal planar	-	2	ဒ	AB ₂ E	airs
Z O	Trigonal pyramidal	B∕A∕-B B Tetra- hedral	-	3	4	AB ₃ E	
₽	t Bent (.∵A B Tetra- hedral	2	2	4	AB_2E_2	
SH SH	Distorted tetrahedron (or seesaw)	B B B B Trigonal bipyra- midal	1	4	5	AB₄E	
ÇF₃	T- shaped	B B Trigonal bipyra-midal	2	3	5	AB_3E_2	
ωτ ε ∦	Linear	B Trigona bipyra- midal	3	2	5	AB_2E_3	
BrF ₅	Square pyramidal	B B B B C B B B B B B B B B B B B B B B	-	5	6	AB ₅ E	
řef ₄	Sqaure planar	B B B B B B B B B B B B B B B B B B B	2	4	6	AB_4E_2	

^{*} The colored lines are used to show the overall shape, not bonds.