Unit 6: Intermolecular Forces & VSPER Organic Chemistry Homework

Name _____ Block #

- 1. **Organic chemistry** involves molecules that are called hydrocarbons because they contain hydrogen and carbon.
- 2. Hydrocarbons often have functional groups attached that change their physical and chemical properties.

Write the organic names based on the length of the chain, type of bond, or functional group attached

Formula	Organic Name
CH ₄	Methane
CH ₃ CH ₃	Ethane
CH ₃ CH ₂ CH ₃	Propane

Formula	Organic Name
CH₃OH	Methanol
CH ₃ CH ₂ OH	Ethanol
CH ₃ CH ₂ CH ₂ OH	Propanol

H H H-C-C-H H H	Ethane
C—C(Ethene
11 11	
н–с≡с–н	Eth yne
	(also known as <i>acetylene</i>)

R−Ö:	What type of group is this?
Н	Alcohol
:Q:	What type of group is this?
R∕C H	Aldehyde
,o.	What type of group is this?
R-C	Carboxylic Acid
H—Q:	

Write the formula and draw the following molecules:

but**a**ne

CH₂=CH₁CH₃ or C₃H₆ prop**e**ne

Pentanol CH₃CH₂CH₂CH₂CH₂OH or C₅H₁₁OH

ethanoic acid CH₃COOH or HC₂H₃O₂