Alts	PC
H	10

Unit 7 Chemical Formulas and Reactions

Intro to Molar Mass & Percent Composition

Name ANSWER KEL

Molar Mass & Avogadro's Number

Amadeo Avogadro first proposed that the volume of a gas at a given pressure and temperature is proportional to the number of atoms or molecules, regardless of the type of gas. Although he did not determine the exact proportion, he is credited for the idea. Avogadro's number is defined as 6.022 x 1023 atoms per mole. A mole is defined as amount of substance of a system that contains as many elementary entities as there are atoms in 12 g of carbon-12. The atomic masses listed on the periodic table equal the number of grams per mole for each element.

For more information visit: https://courses.lumenlearning.com/boundless-chemistry/chapter/molar-mass/

Use the Periodic Table to list the molar mass of the following elements to three decimal places.

Determine the molar mass of the following compounds. Show your work.

$$2(12.011) + 6(1.008) + 15.999 = [46.069 g/mol]$$

Ca

Ch3 CH2OF

3(40.080) + 2(30.974) + 8(15.999) = 310.18g/mo Caz (POY

Critical Thinking Questions. Show your work.

1.) What is the molar mass of calcium hydroxide?
$$40.080 + 2(15.999) + 2(1.008) = 74.0940 \text{ M}$$
2.) What is the molar mass of methane?

*	7	Chemic	al For	mula	s and	Reactions	
0	to	Molar	Mass	& Pei	rcent	Composition	n

	Ana when
Name	Answerkey
Block	

Percent Composition & Combustion Analysis

The relative percent of each element in a compound is called the **Percent Composition**. The percent composition compares the mass of each element to the total mass of the compound. Chemists often use **Combustion Analysis**, an elemental analytical technique used on solid and liquid organic compounds, to determine the relative amounts of carbon, hydrogen, oxygen in compounds, and occasionally to identify the amounts nitrogen and sulfur in compounds. This technique was invented by **Joseph Louis Gay-Lussac**.

For more information, visit https://courses.lumenlearning.com/boundless-chemistry/chapter/compound-composition/

Total Molar Mass of Element
Molar Mass of Compound × 100 = Percent Composition

								1					-
Ca	cula	ate the perce										2761	17
	- 1		Na =	22.99	10 spinot	58.	1430/n	nol.	× 10	0 = 1	37.0	51/0	Nal
	1)	NaCl	C1 =	35.4	53g/moi	58.	1430/	mol	× 10	0 = 10	39.38	% C	1.
				Ma			3			0			
	2)	MgSO4	120.	805 ×100	= 20.193, Mg	70 3	2.060	× 100	26.	6377.	4(15.999)) * 100	53.1
	3)	CH ₃ CH ₂ OH		C			Н				0		
			20	12.011)	152.	14370C)	6(1.00	8)	1.3	1200 11	15.999	- ×10	0=
			46.	069.	× /00		46.06	9 × 10	0=[10	1.125/6H	15.999	9 1	34.7287
	4)	Ca ₃ (PO ₄) ₂	. 0.			- X	4	0 - 3	1/30	974)	- 110	2 07	10,01
			3(40.0	80) XI	00= 130 =	1/ 5 24	- 1	-	310 10	g X	100-111		77
			310,1	8	[00.1	05 %	Cal	n - 8	(15.	999)	×100 = 19	41.26	4%0
	5)	CO ₂)	310.	16	× 100 -		710
		C =	12.0	X.100	= 27.20	92% C		,		\	0 = \[72, \]		_
			44.0	07	Kananan		0=	2 (15	999	2×10	0 = 72,	708%	0
Cri	tical	l Thinking Qu	estions.	Show You	r Work.			44.0	204		1		
	1.												
	1	peroxide (H	202)?	2 + (80	(15499)	= //	120:2	(1.00	8)+	15 99	99 - 18	3.015	g/mol.
	C	HLUZ	- 409	10/12	34.014	3/midl	0/0.	15.90	79	100	= 10000	201	
	c/0	peroxide (H H2O ₂)	15.721)	× 100 =	94.07%	7/	7.0	18.0	15	100	188.80	970	-
	2.	OSING CONTE	astion An	arysis, crici	inists actern	illica tila	raicotine	, the dat	il curve c	11 ag 111 ci	Barettes, co.		
				n, and 17.	3% nitrogen						ered from a 5		
		of nicotine?	1. 74	0	XgC	H	8.6	. T X	9 1		N: 17.	-	XgN