Unit 7 Chemical Formulas and Reactions
Intro to Chemical Formulas

Name	 _
Block	

Types of Chemical Formulas

A **Molecular Formula** describes the exact number and type of atoms in a single molecule of a compound. The number of atoms is represented using subscripts. The molecular formula for sodium sulfate is Na_2SO_4 and for acetic acid it is $C_2H_4O_2$.

An **Empirical Formula** represents the simplest whole-integer ratio of atoms in a compound. The molecular formula for a compound can be the same as or a multiple of the compound's empirical formula. The empirical formula stays the same for ionic compounds, such as sodium sulfate (Na_2SO_4), but it reduces to the lowest ratio for covalent compounds, such as acetic acid ($C_1H_2O_1$).

A **Structural Formula** shows the number of atoms and their exact arrangement in the molecule. The structural formula stays the same for ionic compounds, such as sodium sulfate (**Na₂SO₄**), but it changes for organic compounds, such as acetic acid (**CH₃COOH**).

For more information visit: https://courses.lumenlearning.com/boundless-chemistry/chapter/chemical-formulas/

Write the molecular, empirical, and structural formulas for butanoic acid below:

H H H O. H-C-C-C-C H H H H O-H	Molecular Formula	Empirical Formula	Structural Formula
Butanoic acid			

Empirical Formulas can be calculated by using the Percent Composition of each element in a compound. For instance, suppose a chemist used Combustion Analysis to determine that a sample of butanoic acid was composed of 54.529% C, 9.152% H, and 36.319% O. Follow the steps below to calculate its empirical formula.

Percent Composition	Change to Grams	÷ Molar Mass	= Moles	÷ Smallest Moles	= Subscripts
54.529 % C		÷	=	÷	=
9.152 % H		÷	=	÷	=
36.319 % O		÷	=	÷	=

Write the **Empirical Formula** for butanoic acid using the subscripts calculated above. _____ Compare this to the empirical formula for butanoic acid written in the first table above.

The **Molecular Formula** can be calculated by scaling up the empirical formula proportionately based on the measured molecular mass of the compound.

Given the **Empirical Formula** of $C_2H_4O_1$ and the **molecular mass of 88 g/mol** to calculate the molecular formula for butanoic acid. Compare it to the molecular formula shown above.

Follow these steps to determine the molecular formula.

Step 1: Calculate the empirical mass using atomic masses from periodic table.

Step 2: Divide molecular mass by empirical mass to determine the scale factor.

Step 3: Multiply subscripts in empirical formula by scale factor to determine subscripts in molecular formula.

Unit 7	Chemical	Formulas and	Reactions
--------	----------	--------------	-----------

Ì	Intro	tο	Cham	ical	Formu	ılac
ı	ıntro	10	t.nen	แตลเ	FORM	иач

Name	
Block	

1. The main ingredient in the antacid called Tums is composed of 40.043% Calcium, , 12.000% Carbon, and 47.957% Oxygen. Write the empirical formula and name the compound.

Element	Change % to Grams	÷ Molar Mass	= Moles	÷ Smallest Moles	= Subscripts
Ca	g	÷	=	÷	=
С	g	÷	=	÷	=
0	g	÷	=	÷	=

Empirical Formula =	Name of Compound =	:
Limpinical i oriniala	 itaine or compound	

2. Using Combustion Analysis, a chemist determines that Nicotine, the addictive drug in cigarettes, contains 74.0% carbon, 8.65% hydrogen, and 17.35% nitrogen. Determine the empirical formula for nicotine.

Element	Change % to Grams	÷	Molar Mass	=	Moles	÷	Smallest Moles	=	Subscripts
С	g	÷		=		÷		=	
Н	g	÷		=		÷		=	
N	g	÷		=		÷		=	

Empirical	Formula	=	

Calculating Molecular Formulas. Show your work.

- 1. The empirical formula of a substance is C₄H₅ON₂ and the molecular mass is 194.19 grams per mole. Determine its molecular formula.
- 2. The empirical formula of a substance is CH₂O and its molecular mass is 180 g/mol. What is its molecular formula?
- 3. Methylpropionylacetate is a carboxylic acid anion derived from a hexanoate. Its empirical formula is C₂H₃O and its molecular mass is 129.13 g/mol. Determine its molecular formula.