
Intermolecular Forces Practice Problems

- 1. Rank the following substances by increasing polarity and intermolecular forces.
 - a) HF, BF₃, KF, F₂
 - b) Na₂O, CO₂, CO, O₂
 - c) PCl₃, BCl₃, LiCl, Cl₂
- 2. What is the strongest intermolecular force present in each of the following substances?
 - a) Hydrogen Fluoride (HF)
 - h) Cadima Orida (Na O)
 - b) Sodium Oxide (Na₂O)
 - c) Phosphorus Trichloride (PCl₃)
 - d) Oxygen Gas (O₂)

USE THE VSPER STRUCTURES BELOW TO ANSWER THE FOLLOWING QUESTIONS:

- 3. H₂Se or H₂O: Which substance will have the highest boiling point and why? _____
- 4. CO or CO₂: Which substance will have the lowest melting point and why? _____

Strongest IMF Sodium Chloride (NaCl)

(lons are most polar)

Block
DIOCK

Intermolecular Forces

Most Polar	1	Ionic Bonding	1	Ion – Ion Interactions
	Polarity Scale	Polar Covalent Bonding	olecular Strength	Hydrogen Bonding Dipole – Dipole Interactions
Least Polar	ă	Non-polar Covalent Bonding	Interm	London Forces*

Physical Properties depend on Intermolecular Forces!

The <i>stronger</i> the force, the	the malting point				
The <i>stronger</i> the force, the					
	the <i>viscosity</i> (resistance to flow). the <i>surface tension</i> (resistance to increase in surface area.)				
	the <i>vapor pressure</i> (partial pressure of vapor above a liquid				
at a certain temperature).					
	are internal attractive or repulsive forces within a non- olecule approaches another, there is an instantaneous and				
•	oution due to slight forces. This causes an				
	lecules to temporarily be attracted to one another.				
	,				
Dipole – Dipole Interactions are not caused by	/ ionic charges! In Dipole – Dipole Interactions the covalently				
	causing dipoles to form. As a result, the more				
	h the moreside of another molecule of the same				
substance. Unlike the London Forces, the dipole	es in this situation are				
Hydrogen Bonding is a special type of Dipole	-Dipole Polar Covalent Bonding. Hydrogen bonding has an				
	hydrogen has an So				
	t becomes a, allowing it's one valence electron				
to be completely pulled away by the greate atom.	er electronegativity of the,, or				
Ion – Ion Interactions are the result of Ionic cl	harges! Ionic compounds are made up of a that				
	positive ion () and a non-metal that				
). These ions work like the poles on a magnet to				
create and forces aligning the ions within the compound.					

^{*}London Forces are also called Dispersion Forces and Induced Dipole Interactions