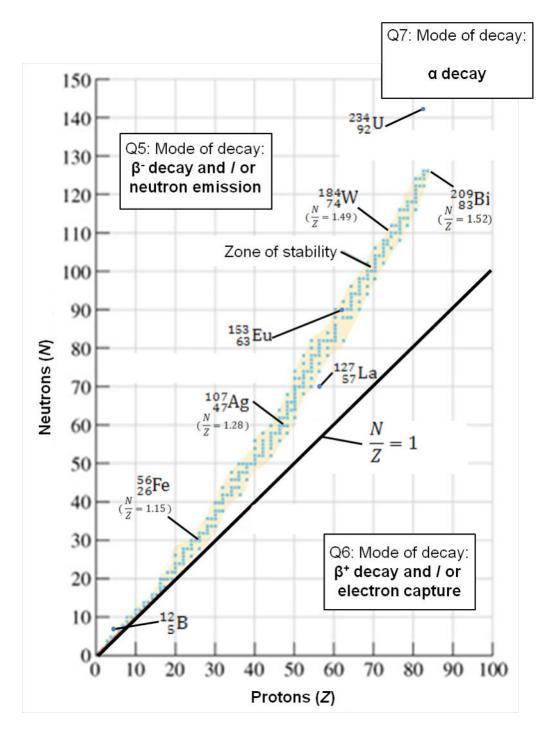
## **Worksheet 2 – Answers to Critical Thinking Questions**

## **Model 1: Radioactive Decay**

| 1. |     | change in number of neutrons (N) | change in number of protons (Z) |  |
|----|-----|----------------------------------|---------------------------------|--|
|    | (a) | reduced by 2                     | reduced by 2                    |  |
|    | (b) | reduced by 1                     | increased by 1                  |  |
|    | (c) | increased by 1                   | reduced by 1                    |  |
|    | (d) | increased by 1                   | reduced by 1                    |  |
|    | (e) | reduced by 1                     | unchanged                       |  |
|    | (f) | unchanged                        | unchanged                       |  |

2. (a)  ${}^{234}_{90}$ Th (b)  ${}^{14}_{7}$ N (c)  ${}^{11}_{5}$ B (d)  ${}^{25}_{5}$ Mn (e)  ${}^{12}_{4}$ Be (f)  ${}^{99}_{93}$ Tc


| 3. |     | type of decay        | change in mass number | change in $N/Z$  |
|----|-----|----------------------|-----------------------|------------------|
|    | (a) | α decay              | reduced by 4          | (small) increase |
|    | (b) | β- decay             | no change             | reduced          |
|    | (c) | β <sup>+</sup> decay | no change             | increased        |
|    | (d) | electron capture     | no change             | increased        |
|    | (e) | neutron emission     | reduced by 1          | reduced          |
|    | (f) | γ decay              | no change             | no change        |

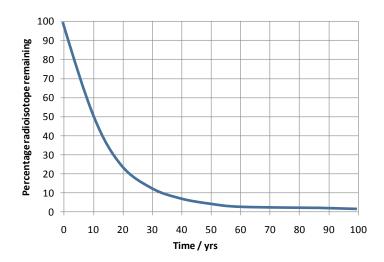
## **Model 2: Predicting the Mode of Decay**

4.  $^{31}_{15}P$  has N = (31 - 15) = 16 and Z = 15. For this nuclide, N/Z = 1.1.  $^{30}_{15}P$  has N = (30 - 15) = 15 and Z = 15. For this nuclide, N/Z = 1.0.

After Z = 10, the N/Z ratio needs to exceed 1. The extra neutron is needed to stabilize the nucleus.

- 5.  $\beta$  decay and/or neutron emission
- 6.  $\beta^+$  decay and/or electron capture.
- 7.  $\alpha$  decay.




- 8. Sketch each of the following nuclides on figure 1, calculate their N/Z ratios and hence predict their stability. For the unstable (radioactive) nuclides, predict the mode(s) of nuclear decay they are likely to undergo
  - (a)  $^{12}_{5}$ B has N/Z = 7/5 = 1.4. As this ratio is too high for this region, it will probably undergo  $\beta$  decay.
  - (b)  $^{153}_{63}$ Eu has N/Z = 90/63 = 1.43 which fits into the stability region (no decay).

- (c)  $^{234}_{92}$ U has N/Z = 142/92 = 1.5. As Z > 83, it is too heavy to lie within the band and will probably undergo  $\alpha$  decay to decrease its total mass.
- (d)  $^{127}_{57}$ La has N/Z = 70/57 = 1.2. As this ratio is too low for this region, it will probably undergo either  $\beta$  emission or electron capture (or both).

## Model 3: Calculating radioactive decay and half life, t<sub>1/2</sub> and activity

- 9. N is the number of nuclei, t is the time and k is the decay constant.  $N_{(t)}$  is the number of nuclei at time t and  $N_{(0)}$  is the number of nuclei at time t = 0. The SI unit for time is seconds (s) and the SI unit for the decay constant is inverse seconds (s<sup>-1</sup>)
- 10.  $t_{1/2}$  is the half life. It is the time taken the number of nuclei to halve. The SI unit for time is seconds (s). k is the decay constant. The SI unit for the decay constant is inverse seconds (s<sup>-1</sup>).

11.



12. 
$$t_{1/2} = \ln 2/(1.0 \times 10^{-6} \text{ s}^{-1}) = 6.9 \times 10^{5} \text{s} = 8.0 \text{ days}$$

- 13. k is the decay constant and has SI units of inverse seconds (s<sup>-1</sup>). *N* is the number of nuclei. *A* is the activity and is the number of disintegration per seconds. It has units of disintegration s<sup>-1</sup> or Bq.
- 14. Avogadro's number

15. 
$$10.0 \text{ mg}^{201}\text{T1} = 4.975 \text{ x } 10^{-5} \text{ mol} = 3.00 \text{ x } 10^{19} \text{ nuclei}$$

$$k = A/N = 7.9 \text{ x } 10^{13} / 3.00 \text{ x } 10^{19} = 2.6 \text{ x } 10^{-6} \text{ s}^{-1}$$

$$t_{1/2} = \ln 2/k = \ln 2/2.6 \text{ x } 10^{-6} = 2.6 \text{ x } 10^{5} \text{ s}$$