Nam	1e		

What is a solution?

- A solution is a _____ mixture. It's made of 2 parts:
 - o ______ the part that gets dissolved
 - the part that does the dissolving
 - o Both parts can be solids, liquids, or gases
 - If the solution is aqueous, the ______ is _____.

Examples of solutions:

Solutions vs. Colloids vs. Suspensions

Solutions	Colloids	Suspensions	
 Homogeneous mixture Made of particles that are small in size (diameters from 0.1 – 2 nm) Transparent May be colored Cannot be separated by filtration Do not separate on standing 	 Homogeneous mixture Made of particles that are larger in size (diameters from 2 – 500 nm) Particles are large enough to scatter light Cannot be separated by filtration Often murky or opaque Do not separate on standing 	Not really homogenous b/c particles do separate on standing Made of larger particles that can be seen (sometimes) by the naked eye	
Ex: salt water, soda, kool-aid	Ex: milk, fog	Ex: blood, paint, aerosol sprays	

Dissolving

Undissolv	ed Solute	Dissolved So	olute Inings that are similar will dissolve in each other. Remember tr	nis b
	_	*	This means that: Solutes that are will dissolve in solvents that	are
7,1			Solutes that are or will dissolv solvents that are	/e in
Solvent Particle	Solute Particle	Forces of Attraction	Examples: CCl4 is a solvent that is Water is a solvent that is	

Which of these solutes should dissolve in CCl4 and which should dissolve in water?

CaCl₂ SiBr₄ C₂H₅OH NH₃ LiNO₃

Dissociating

0	Dissociation happens when a compound breaks down into the	that make it up.	This is different from
	decomposition! Decomposition happens when a compound breaks down	into the	that make it up.
	- Marke the constitution for the decomposition of a division blackles		

- Write the reaction for the decomposition of sodium chloride:
- Compounds that are _____ will dissociate because they are made of _____. (This is why ionic compounds conduct electricity when dissolved in water!)
- Compounds that are _____ will not dissociate.
- Dissociation doesn't happen until the compound is dissolved in a solvent (usually water)!

Which of these solutes will dissociate when dissolved in water?

CaCl₂ SiBr₄ C₂H₅OH NH₃ LiNO₃

Solubility Rules:

Soluble Salts Contain:

(these salts will dissolve in water)

Nitrate (NO₃)

Any alkali metal ion (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺)

Ammonium (NH4+)

Chloride, bromide, and iodide (Unless paired with Ag⁺, Pb²⁺, or Hg2²⁺)
Sulfate (unless paired with Ba²⁺, Pb²⁺, Hg2²⁺, or Ca²⁺)

Insoluble Salts Contain:

(these salts will not dissolve at all in water, or only dissolve a tiny bit)

Hydroxide (unless paired with an alkali metal) Sulfide (S²⁻), Carbonate (CO₃²⁻) Chromate (CrO₄²⁻) Phoshphate (PO₄³⁻)

Determine whether the following salts (ionic compounds) are soluble in water:

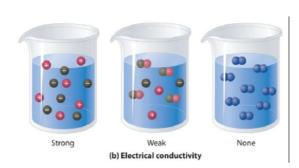
NaCl

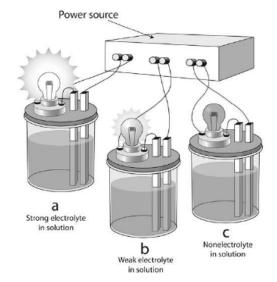
AgBr

BaSO₄

Cu(OH)₂

FeCO₃


LiBr


PbCl₂

Electrolytes

Electrolyte -

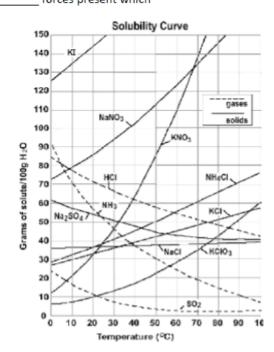
Properties of an Electrolyte:

Factors Affecting Solubility

Structure/Polarity

Pressure

- Pressure does not affect the solubility of
- Pressure has a huge effect on the solubility of
- As pressure increases, the solubility of a gas _____


Temperature

Temperature increases solubility of solids, but decreases the solubility of gases. Solubility Curves (left) show this trend.

- Which solid is most soluble at 50°C?
- How many grams of SO₂ will dissolve at 30 °C?
- How many grams of KNO₃ will dissolve in 200 g of water at 42°C?

low many grams of KNO3 will dissolve in 200 g of water at 42 C.

forces present which

Concentration of Solutions

Molarity =
$$\frac{\text{moles of solute}}{\text{L of solution}}$$
 Mass Percent = $\frac{\text{mass of solute}}{\text{mass of solution}} x100$

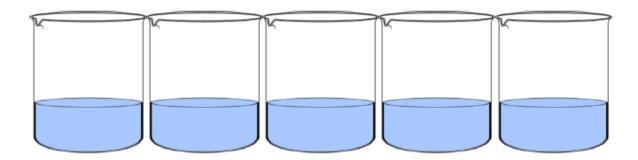
Ex: A solution is prepared by mixing 1.00 g of ethanol with 100.0 g of water. Calculate the mass percent of the ethanol solution.

Ex: Calculate the molarity of a solution prepared by dissolving 11.5 g of solid NaOH in enough water to make 1.50 L of solution.

Diluting Solutions

When diluting solutions, the goal is to make the solution LESS concentrated. To do this more SOLVENT is added – the amount of SOLUTE stays the same.

In the lab, to dilute a solution, we generally take a sample from a more concentrated solution and add more solvent (usually water) to it. To figure out how much of the concentrated solution we need, we use this formula:


$$\mathbf{M}_1 \mathbf{V}_1 = \mathbf{M}_2 \mathbf{V}_2$$

Ex: What volume of a 6.0 M HCl solution is need to make 100 mL of a 2.0 M HCl solution?

Colligative Properties

Colligative properties - properties of a solution that depend on the concentration of the solute particles in a solution

- *Adding a solute to a solvent <u>always lowers the vapor pressure</u>. The more solute is added, the more the vapor pressure will be lowered.
- *A liquid boils when vapor pressure equals external (usually atmospheric) pressure. If adding a solute lowers vapor pressure, the temperature of the solvent must be greater to reach vapor pressure required for boiling. So, the boiling point will be increased if a solute is added. This is called boiling point elevation. The more solute is added, the higher the boiling point will be.
- *Freezing point is lowered with the addition of a solute. This is called freezing point depression. The more solute is added, the lower the freezing point will be.

