Deep Run High School

CHEMISTRY I: 1(A), 5(A), 7(A)

Unit 6 Test

Instructor: Jennifer Krug

Name:		Score:	/ 100
Instruc	tions:		
Question ´			/1
Dipo	le - dipole interactions occur due to		
	an uneven distribution of valence elctrons.		
	similarities in atomic radius.		
	a small difference in electronegativity.		
	differences in the amount of shielding.		

ID: **7364** Page 1 of 24

	Name:	
Q	uestion 2	/1
	Which of the following molecules exhibits a dipole - dipole interaction?	
	CCI ₄	
	□ BF ₃	
	\square CO_2	
	PCI ₃	
Q	uestion 3	/1
	Which of the following molecules exhibits a 105° bond angle?	
	CH ₂ O	
	\square H ₂ O	
	\Box C_2H_2	
	\square CO_2	

ID: **7364** Page 2 of 24

Name:	
Question 4	/1
What is the VSEPR shape of a dihydrogen selenide molecule?	
linear	
pyramidal	
bent	
tetrahedral	
Question 5	/1
Atoms with valence electrons typically form a trigonal pyramidal structure.	
6	
4	
□ 5	
☐ 3	

ID: **7364** Page 3 of 24

Name:									
Question	6								/1
	t bon		gles	are	pres	ent i	n a phosphorus trichloride		
	120								
107°									
	105	0							
	109	.5°							
Question	7								/1
	_					_	ity table below, predict the polarity and an hydrogen atom.		
BCCV	, cerr	а рп	озрі	ioi a.	deo	iii ai	id dir riyar ogen atom.		
Ele	ctro	570	500	(650)		ues			
·	2000 (100) (1000 (1000 (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (1000 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (Sor	ne /	Ato	ms				
2.1 H									
1.0 Li	1.5 Be	2.0 B	2.5 C	3.0 N	3.5 O	4.0 F			
0.9	1.2 Mg	1.5 Al	1.8 Si	2.1 P	2.5 S	3.0 CI			
0.8 K	_	Jan-Lord J			2.4 Se	2.8 Br			
	nonp	olar	ioni	C					
	nonp	olar	COV	alent					

ionic

ID: **7364** Page 4 of 24

Name:	

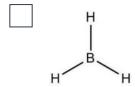
/1

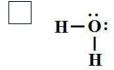
According to the electronegativity chart below, predict the polarity between a carbon atom and an oxygen atom.

Electronegativity Values of Some Atoms

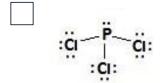
2.1 H						
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Li	Be	B	C	N	O	F
0.9	1.2	1.5	1.8	2.1	2.5	3.0
Na	Mg	Al	Sİ	P	S	CI
0.8 K	1.0 Ca				2.4 Se	2.8 B r

nonpolar ionic
nonpolar covalent
polar covalent
ionic


ID: **7364** Page 5 of 24


Name:	
Question 9	/1
Which of the following atoms exists as a diatomic molecu	ıle?
neon	
helium	
bromine	
carbon	
Question 10	/1
What is the bond angle of a carbon dioxide molecule?	
105°	
120°	
180°	
□ _{90°}	


ID: **7364** Page 6 of 24


/1

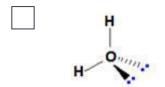
Which of the following demonstrates the trigonal planar VSEPR shape?

	Name	:	
Qu	estion	12	/1
	Whi	ch of the following atoms breaks the octet rule?	
		Boron	
		Arsenic	
		Silicon	
		Selenium	
Qu	estion	13	/1
		ch of the following represents the bond structure of a ahedral molecule?	
		four single bonds and no lone pairs	
		three single bonds and one lone pair	
		three single bonds and no lone pairs	
		two single bonds and two lone pairs	

ID: **7364** Page 8 of 24

	Name:		
Q	uestion 14	/1	
	Which of the following molecules exhibits a tetrahedral structure?		
	CO ₃ -2		
	CH ₃ CI		
	\square H_2O		
	□ NH ₃		
Q	uestion 15	/1	
	Sort the following chemicals from weakest to strongest based on intermolecular forces.		
	NaF		
	BCl ₃		
	□ HF		
	\square Cl_2		

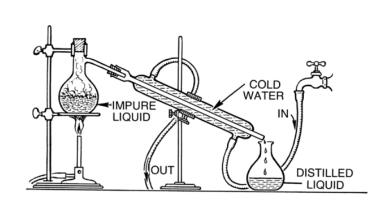
ID: **7364** Page 9 of 24


Name:	
Question 16	/1
Which of the following molecules will have the highest surface tension?	
\square BF ₃	
☐ HBr	
CCI ₄	
□ NH ₃	
Question 17	/1
Which of the following molecules has the highest viscosity?	
☐ HCI	
\square N_2	
PCI ₃	
□ NH₂	

ID: **7364** Page 10 of 24

/1

Which of the following molecules exhibits the strongest intermolecular forces?


- Ö=C=Ö

Name:			

/1

The following apparatus is used to separate liquids based on their

- densities
- ☐ melting points
- boiling points
- ☐ molar masses

ID: **7364**

Question	า 20		/1
All	of the followir	ng are common pharmaceuticals <i>EXCEPT</i>	
	nylon		
	vitamins		
	insulin		
	aspirin		
Question	n 21		/1
Whi poir		owing hydrocarbons will have the highest boiling	5
	ОН	ОН	
	Ethanol	Propanol	
/	ОН	ОН	
	Butanol	Pentanol	
	pentanol		
	propanol		
	butanol		
	ethanol		

Name: _

ID: **7364** Page 13 of 24

Name:	
Question 22	/1
Which of the following is an example of a natural polymer?	71
plastic	
nylon	
protein	
Kevlar	

ID: **7364** Page 14 of 24

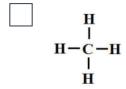
/1

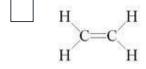
Which of the following hydrocarbons is saturated?

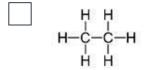
/1

Which of the following structures represents a nonpolar molecule?

- H-C-C(H-C-C(


- ☐ H :0: H—C—C H H


Name:	
Question 25	/1
Select all of the following that belong to the alkane group?	
\Box C_4H_{10} \Box C_3H_8	
\Box C_2H_4	
\square C_2H_2	
Question 26	/1
Which of the following is the mathmatical formula used to predict the pattern of an alkyne?	
$C_n H_{2n+2}$	
\Box $C_n H_{2n}$	
\Box $C_n H_{2n-2}$	
\square $C_n H_n$	


Name:			

/1

Which of the following is the proper molecular structure for ethene?

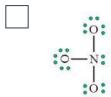
Question 28

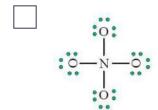
Which of the following is held together by ion-ion attraction?

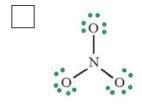
☐ MgCl ₂	2
---------------------	---

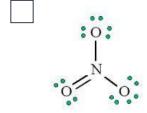
$$\square$$
 CCI₄

Name:		
Question 29		/1
Which of the following compound boiling point?	ls would exhibit the highest	
\square Cl_2		
\square H ₂ O		
PCI ₃		
NaCl		
Question 30		/1
The molecules in a sample of carb each other by		
London dispersion forces		
hydrogen bonding forces		
dipole - dipole forces		
ion - ion forces		


ID: **7364** Page 19 of 24


Name:	
Question 31	/1
Which of the following molecules would have the lowest boiling point?	
CH ₄	
PCI ₃	
\square H ₂ O	
Na ₂ O	

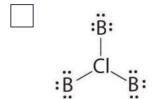

ID: **7364** Page 20 of 24

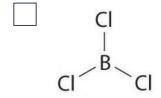

/1

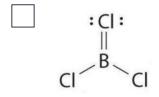
Which of the following is the correct Lewis Dot structure for a nitrate ion?

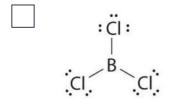
Name:			

/1


Which of the following is the correct Lewis Dot structure for nitrogen gas?


- \square :N \equiv N:
- □ :N N:
- N = N
- \square :N = N:


Name:			


/1

Which of the following is the correct Lewis Dot structure for boron trichloride?

/1

Which of the following is the correct Lewis Dot structure for methane?

- □ н-ё-н
- H H C H
- ⊔ Н Н−С−Н | Н

Instructions for grading: Grade each question and tally the score to obtain the total test points. If the factor does not equal 1, multiply the total points by the factor to obtain the student's final score.

Question 1
Dipole - dipole interactions occur due to
an uneven distribution of valence elctrons.
1 possible pts.
Question 2
Which of the following molecules exhibits a dipole - dipole interaction?
PCl ₃

1 possible pts.

ID: **7364** Page 1 of 16

1 possible pts.

Question 3 Which of the following molecules exhibits a 105° bond angle? H_2O 1 possible pts. Question 4 What is the VSEPR shape of a dihydrogen selenide molecule? bent 1 possible pts. Question 5 Atoms with ___ valence electrons typically form a trigonal pyramidal structure. 5

ID: **7364** Page 2 of 16

What bond angles are present in a phosphorus trichloride molecule?

107°

1 possible pts.

Question 7

According to the electronegativity table below, predict the polarity between a phosphorus atom and an hydrogen atom.

Electronegativity Values of Some Atoms

2.1 H						
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Li	Be	B	C	N	O	F
0.9	1.2	1.5	1.8	2.1	2.5	3.0
Na	Mg	Al	Si	P	S	CI
0.8 K	1.0 Ca				2.4 Se	2.8 Br

nonpolar covalent

1 possible pts.

ID: **7364** Page 3 of 16

According to the electronegativity chart below, predict the polarity between a carbon atom and an oxygen atom.

Electronegativity Values of Some Atoms

2.1 H						
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Li	Be	B	C	N	O	F
0.9	1.2	1.5	1.8	2.1	2.5	3.0
Na	Mg	Al	Si	P	S	CI
0.8 K	1.0 Ca				2.4 Se	2.8 Br

polar covalent

1 possible pts.

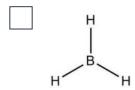
ID: **7364** Page 4 of 16

Which of the following atoms exists as a diatomic molecule?

bromine

1 possible pts.

Question 10


What is the bond angle of a carbon dioxide molecule?

180°

1 possible pts.

Question 11

Which of the following demonstrates the trigonal planar VSEPR shape?

1 possible pts.

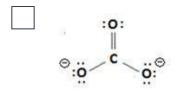
ID: 7364

Question 12 Which of the following atoms breaks the octet rule? Boron 1 possible pts. Question 13 Which of the following represents the bond structure of a tetrahedral molecule? four single bonds and no lone pairs 1 possible pts. Question 14 Which of the following molecules exhibits a tetrahedral structure? CH₃Cl 1 possible pts.

ID: **7364** Page 6 of 16

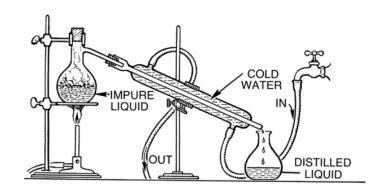
Sort the following chemicals from weakest to strongest based on intermolecular forces.
4 NaF
² BCl ₃
3 HF
$1 Cl_2$
1 possible pts.
Question 16
Which of the following molecules will have the highest surface tension? $\hfill \hfill \hfil$
1 possible pts.

ID: **7364** Page 7 of 16


Which of the following molecules has the highest viscosity?

1 possible pts.

Question 18


Which of the following molecules exhibits the strongest intermolecular forces?

1 possible pts.

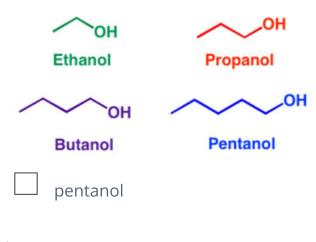
ID: **7364** Page 8 of 16

The following apparatus is used to separate liquids based on their ______.

boiling points

1 possible pts.

Question 20


All of the following are common pharmaceuticals **EXCEPT**

☐ nylon

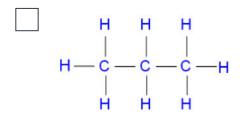
1 possible pts.

ID: **7364** Page 9 of 16

Which of the following hydrocarbons will have the highest boiling point?

¹ possible pts.

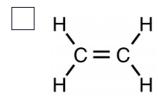
Question 22


Which of the following is an example of a natural polymer?

protein

1 possible pts.

ID: **7364** Page 10 of 16


Which of the following hydrocarbons is saturated?

1 possible pts.

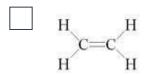
Question 24

Which of the following structures represents a nonpolar molecule?

1 possible pts.

1 possible pts. / partial credit

Question 26


Which of the following is the mathmatical formula used to predict the pattern of an **alkyne**?

 \Box $C_n H_{2n-2}$

1 possible pts.

Question 27

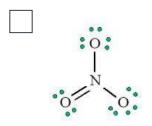
Which of the following is the proper molecular structure for ethene?

1 possible pts.

1 possible pts.

Question 28 Which of the following is held together by ion-ion attraction? MgCl₂ 1 possible pts. Question 29 Which of the following compounds would exhibit the highest boiling point? NaCl 1 possible pts. Question 30 The molecules in a sample of carbon dioxide gas are attracted to each other London dispersion forces

ID: **7364** Page 13 of 16


Which of the following molecules would have the lowest boiling point?

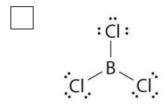
1 possible pts.

Question 32

Which of the following is the correct Lewis Dot structure for a nitrate ion?

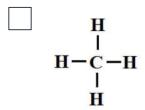
1 possible pts.

ID: **7364** Page 14 of 16


Which of the following is the correct Lewis Dot structure for nitrogen gas?

1 possible pts.

Question 34


Which of the following is the correct Lewis Dot structure for boron trichloride?

1 possible pts.

ID: 7364

Which of the following is the correct Lewis Dot structure for methane?

1 possible pts.

ID: **7364** Page 16 of 16