Name:	Class: Date:
Chemist	ry Final Exam 2018-2019
Multiple (Identify the	Choice ethat best completes the statement or answers the question.
1.	Ch. 5d
	What is primarily responsible for the high surface tension, specific heat capacity, boiling poin and melting point of water?
	 a. ionic bonds b. covalent bonds c. dispersion forces d. hydrogen bonds
2.	Ch. 1i
	Using the scientific method, information obtained through one's senses is called a(n)
	a. theoryb. experimentc. hypothesisd. obsevation
3.	Ch. 3b
	Which coefficients correctly balance the formula equation $CaO + H_2O \rightarrow Ca(OH)_2$?
	a. 2, 1, 2 b. 1, 2, 1 c. 1, 1, 1 d. 1, 2, 3

Name:

$$\mathsf{NaHCO_3(s)} \, + \, \mathsf{HCl(aq)} \, \rightarrow \, \mathsf{NaCl(aq)} \, + \, \mathsf{CO_2(g)} \, + \, \mathsf{H_2O(g)}$$

Data Table

evaporating dish + watch glass	42.70 g
evaporating dish + watch glass + NaHCO ₃	45.20 g
evaporating dish + watch glass + NaCl	44.45 g

4. Chem. 1a

A student conducted an experiment and was interested in the mass of the product of the chemical reaction. Some results of the experiment are shown above. What is the mass of the NaCl?

- $a.\quad 0.75\ g$
- b. 2.25 g
- c. 1.75 g
- d. 2.50 g

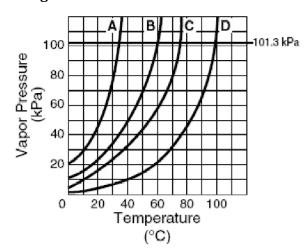
5. **Ch. 2a**

The element chlorine exists as two naturally occurring isotopes. Cl-35 occurs 75% of the time and Cl-37 occurs 25% of the time. Which of the following calculations should be used to calculate the correct average atomic mass of chlorine?

$$\frac{(35 \text{ amu} \times 3) + 37 \text{ amu}}{2}$$

a.

(35 amu \times .75) + (37 amu \times .25)


$$\frac{35 \text{ amu} + 37 \text{ amu}}{2}$$

c.

$$\frac{(35 \text{ amu} \times 3) + 37 \text{ amu}}{3}$$

d.

6. **Ch. 1g**

Line D represents water. If the atmospheric pressure in a flask is lowered to 70 kPa, water would boil at what temperature?

- a. 92°C
- b. 32°C
- c. 100°C
- d. 70°C

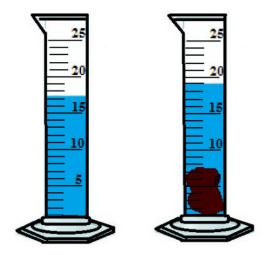
7. **Ch. 2g**

In HNO_3 the oxidation state of hydrogen is +1 and the oxidation state of oxygen is -2. Therefore, the oxidation state of nitrogen is —

- a. +3
- b. +4
- c. +5
- d. -1

8. **Ch. 3c**

A compound is composed of 85.64% carbon and 14.36% hydrogen. The compound has a formula mass of 42.08 grams. What is the molecular formula?


- a. C_2H_{18}
- b. C_3H_6
- c. C₂H₄
- d. CH₂

Name	: <u> </u>	
	9.	Ch. 4b
		If 3.0 moles of methane react with oxygen to produce carbon dioxide and water, what mass of water is produced?
		 a. 72 grams b. 54 grams c. 108 grams d. 18 grams
	10.	Ch. 1g
		Why should the rules of significant figures be utilized when rounding answers to lab calculations?
		 a. to decrease the precision of the lab instruments b. to increase the precision of the student's measurements c. to increase the accuracy of the lab instruments d. to match the accuracy of the lab instruments
	11.	Ch. 6a
		Which substance below is organic?
		a. NaOH b. C_3H_8O c. HCl d. Fe_2O_3
	12.	Ch. 4b
		Consider the reaction: $2 \text{ Al} + 3 \text{ CuCl}_2> 3 \text{ Cu} + 2 \text{ AlCl}_3$ A chemist reacts 5g of aluminum with 37g of copper (II) chloride. If the reaction produces 17 g of copper, what mass of aluminum chloride is produced?
		 a. 15 g b. 8 g c. 25 g d. 10 g

Name	:	
	13.	Ch. 5d
		If substance X is a liquid, substance Y is a gas, and substance Z is a solid, and all are at the same temperature and pressure, then the order of increasing strength of their intermolecular forces would be —
		 a. Y < X < Z b. X < Y < Z c. Z < Y < X d. Y < Z < X
	14.	Ch. 4a
		What is the density of oxygen gas at STP?
		 a. 1.43 g/L b. 7.17 x 10² g/L c. 22.4 g/L d. 32.0 g/L
	15.	Ch. 2h
		Which of the following terms best describes a bowl of sugar?
		a. element

- b. compoundc. heterogeneous mixtured. homogeneous mixture

16. **Chem. 1a**

The volume of the object in the graduated cylinder is

- a. 17 mL
- b. 2 mL
- c. 8 mL
- d. 19 mL

17. **Chem. 1a**

A piece of glassware has a narrow neck and wide base. It is used for heating and mixing so that the contents do not spill out easily. What is the name of this glassware?

- a. evaporating dish
- b. Erlenmeyer flask
- c. buret
- d. beaker

18. **Ch. 3e**

HCI + NaOH → NaCI + H₂O

The reaction is which type of chemical reaction?

- a. Single replacement
- b. Neutralization
- c. Decomposition
- d. Double replacement

Namo	e:	
	19.	Ch. 1g
		The temperature of 40°C is in Kelvins.
		 a173 b233 c. 298 d. 313
	20.	Ch. 2f
		At room temperature, chlorine exists as a gas, bromine exists as a liquid, and iodine exists as a solid. The physical states of these elements indicate that melting point —
		 a. is constant within group 17 elements b. increases from top to bottom within group 17 elements c. is independent of periodic position d. decreases from top to bottom with group 17 elements
	21.	Ch. 4a
		A 1.0 mole sample of H ₂ O ₂ weighs?
		a. 17 g b. 1.0 g c. 34 g d. 18 g
	22.	Ch. 4b
		In the reaction 2 Al + 3 CuSO ₄ \rightarrow Al ₂ (SO ₄) ₃ + 3 Cu, how many moles of aluminum are required to produce 12 moles of copper? a. 12 b. 6 c. 4 d. 8
	23.	Ch. 1g
		A compound has a mass of $4.875x10^2$ g/mol. The number of significant figures in this mass is —
		 a. 4 b. 5 c. 7 d. 2

Name:		
24.	Ch. 3e	

 $\textbf{4 Fe } \textbf{+ 3 O}_2 \rightarrow \textbf{2 Fe}_2\textbf{O}_3$

Which type of reaction is represent above?

- a. single replacement
- b. synthesis
- c. decomposition
- d. double replacement

25. **Ch. 2i**

Neils Bohr's contribution to modern atomic theory was the proposition that-

- a. each atom has a specific number of positive charges
- b. electrons have a definite mass that can be computed
- c. an atom has electrons in discrete energy levels
- d. atomic mass is determined by the number of protons and neutrons in an atom

26. **Ch. 3f**

Which of the following occurs when a reaction in a solution is at equilibrium and more product is added to the solution?

- a. Equilibrium shifts to produce more reactant
- b. No change will occur
- c. The reaction will stop
- d. Equilibrium shifts to produce more product

27. **Ch. 4a**

One mole of carbon dioxide weighs?

- a. 22 g
- b. 44 g
- c. 16 g
- d. 38 g

Name	:	
	28.	Ch. 1e
		A student measured the density of a liqud three times and recorded the following data.
		Trial Density, g/ml 1
		If the actual density of the liquid is 1.45 g, what can be said about the data?
		 a. High precision, high accuracy b. High precision, low accuracy c. Low precision, high accuracy d. Low precision, low accuracy
	29.	Ch. 1g
		A student massed a peice of iron on a balance. The most sensitive beam was marked off in 0.1 g intervals. The student reported the iron's mass as $12.34\mathrm{g}$. Which of the digits in the measurement is estimated?
		 a. 2 b. 1 c. 3 d. 4
	30.	Ch. 5b
		According to Charles' law, the volume of a fixed amount of gas is directly proportional to —
		 a. kelvin temperature b. vapor concentration c. isoelectric mixture d. barometric pressure
	31.	Ch. 5e
		The energy required to melt a solid into a liquid is called —
		 a. heat of vaporization b. heat of fusion c. triple point d. cooling curve

Name	e:	
	32.	Ch. 2h
		All of the following are physical properties of matter EXCEPT:
		a. odorb. flammabilityc. specific heatd. density
	33.	Ch. 3c
		The formula for calcium bromide is —
		a. Ca_2Br_3 b. CB_2 c. $CaBr_2$ d. $CaBr$
	34.	Ch. 3e
		Which of these represents a single replacement reaction?
		 a. Zn + 2HCl> ZnCl₂ + H₂ b. 2KClO₃> 2KCl + 3O₂ c. N₂ + 3H₂> 2NH₃ d. AgNO₃ + HCl> AgCl + HNO₃
	35.	Ch. 3c
		A compound has 30% nitrogen and 70% oxygen. What is its empirical formula?
		 a. N₂O₄ b. NO₄ c. NO₂ d. NO₃
	36.	Ch. 2h
		A form of matter is found to have a variable proportion of its components and 3 sets of properties. It is uniform throughout. It is most likely a/an:
		 a. element b. homogeneous mixture c. compound d. heterogeneous mixture

Name: _					
37	. Ch	20			
37	Г	Elements	Protons	Neutrons	Electrons
		1	11	12	10
	ı	2	1	0	2
		3	15	16	15
		4	20	20	18
			the abov a charge		ts is a pos
	a. b.	2 1			
	c.	4			
	d.	3			
38	. Ch	. 5e			
					80 cal/g, tl ns of water
	a.	80 cal	_		
	b. с.	2400 ca 560 cal	l		
	d.	1200 ca	l		
_ 39	. Ch	. 1f			
	pro	essure. T	he theor		erature of a perature of ment?
	eri				
	a.	1.8%			

Le Chatelier's principle describes what happens to a system in equilibrium when a stress occurs. All of the following could shift an equilibrium EXCEPT—

- a. changing the identity of the catalyst
- b. changing the temperature of the system
- c. changing the pressure on the system
- d. changing the concentration of one of the components

41. **Ch. 3d**

Sulfur is represented by the following Lewis dot structure:

Which of the elements has the same Lewis structure?

- a. Phosphorus
- b. Chlorine
- c. Oxygen
- d. Magnesium

42. **Ch. 4a**

What is the molar mass of Na₃PO₄?

- a. 118 g/mol
- b. 164 g/mol
- c. 58 g/mol
- d. 148 g/mol

43. **Ch. 3d**

Phosphorus trichloride is a covalent compound. Which is a correct Lewis dot structure for PCl₃?

a.

$$\mathbf{P} - \mathbf{C}\mathbf{i} - \mathbf{P}$$

b.

c.

d.

Name	e:	
	44.	Ch. 5f
		Solid copper has a specific heat of 0.385 J/g°C. How much heat is given off by a 25.0 gram sample of copper when it cools from 37.0°C to 22.0°C.
		a974 J b1440 J
		c144 J d375 J
	45.	Ch. 4c
		How many grams of sodium chloride are required to prepare 500.0 mL of a 0.100 M solution?
		a. 58.5 g
		b. 29.3 g
		c. 1.46 g d. 2.93 g
	46.	Ch. 3a
		What is the name of the compound whose formula is FeCO ₃ ?
		a. iron (III) carbon trioxide
		b. iron (I) carbonate
		c. iron (II) carbonate
		d. iron carbonate
	47.	Ch. 4c
		What volume of water must be added to 72.0 g HCl to prepare a 0.15 M solution?
		a. 0.30 L
		b. 480 L
		c. 13 L
		d. 10.8 L
	48.	Ch. 2h
		Which of the following does NOT involve a physical change?
		a. mixing
		b. decomposing
		c. melting
		d. grinding

Name	:	
	49.	Ch. 5b A gas has a volume of 50.0 cm ³ at a temperature of -73°C. What volume would the gas occupy at a
		temperature of -123°C if the pressure stays constant?
		 a. 50.0 cm³ b. 3.75 cm³ c. 5.0 cm³ d. 37.5 cm³
	50.	Ch. 1g
		X Y 2 4 4 8 6 12 8 16
		Using the above data to plot a graph, the graph would
		 a. increase going left to right b. decrease then increase going left to right c. increase then decrease going left to right d. decrease going left to right
	51.	Ch. 5a
		One of the main assumptions of the kinetic molecular theory of gases is that the particles of an ideal gas $\boldsymbol{-}$
		 a. are in rapid, random, constant motion b. must be single atoms instead of molecules c. must be highly chemically reactive d. must be maintained at very high pressures
	52.	Ch. 3d
		Which of the following is the correct molecular shape of NH_3 ?
		a. Linearb. Pyramidalc. Tetrahedrald. Bent

Name	:-	
	53.	Ch. 2a
		An increase in atomic number is related to an increase in atomic mass because —
		 a. more protons are orbiting the atomic nucleus b. more electrons are present in the atomic nucleus c. more electrons are orbiting the atomic nucleus d. more protons are present in the atomic nucleus
	54.	Ch. 4a
		What is the mass of a mole of Mg(NO ₃) ₂ ?
		 a. 118 grams b. 148 grams c. 124 grams d. 86 grams
	55.	Ch. 3d
		When carbon and hydrogen combine to form a molecular compound -
		 a. C and H keep the same number of electrons b. C gains 4 electrons and H loses 1 electron c. H gains 1 electron and C loses 4 electrons d. C and H share electrons
	56.	Ch. 5a
		The average kinetic energy of a sample of water molecules is —
		 a. unaffected by temperature changes b. always equal to zero c. increased as the temperature is increased d. increased as the temperature is decreased
	57.	Chem. 1a
		For an experiment, 13.2 mL of HCl are needed. What is the best instrument to use for measuring this volume?
		 a. Graduated cylinder b. Erlenmeyer flask c. Beaker d. Test tube

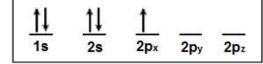
Name: ____

58. **Ch. 3c**

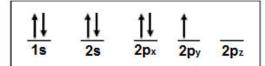
The type of formula that shows the arrangements of atoms and bonds is called —

- a. molecular
- b. chemical
- c. structural
- d. empirical

59. **Ch. 2d**


The elements that are characterized by the presence of an incomplete d sublevel are called —

- a. alkali earth metals
- b. transition elements
- c. halogens
- d. lanthanoids


60. **Ch. 2g**

Which of the following orbital diagrams is incorrect because it violates Hund's rule?

a.

b.

c.

<u>†↓</u>	1			
1s	2s	2px	2py	2pz

d.

		Commence of the Commence of th		2nv	The second second
1	Ţ	†Į	†	†	1

Chemistry Final Exam 2018-2019 Answer Section

MULTIPLE CHOICE

1.	ANS:		DIF: 1			ncook
		Phases of Matter and Kinetic Molec		•		Ch. 5d
2.	ANS:		DIF: 1		REF:	tjones
		Scientific Investigation	STA: o			
3.	ANS:		DIF: 0		REF:	2005 SOL
	OBJ:	Chemical Formulas and Reactions	STA: (Ch. 3b		
4.	ANS:		DIF: a	a	OBJ:	Scientific Investigation
	STA:	Ch. 1a				
5.	ANS:	B PTS: 1	DIF: 0	c	REF:	2001 SOL
	OBJ:	Atomic Structure and Periodic Relat	tionships		STA:	Ch. 2a
6.	ANS:	A PTS: 1	DIF: 1	k	REF:	2004 SOL
	OBJ:	Scientific Investigation	STA: 0	Ch. 1g		
7.	ANS:	C PTS: 1	DIF: 0	e	REF:	2007 SOL
	OBJ:	Atomic Structure and Periodic Relat	tionships		STA:	Ch. 2g
8.	ANS:	B PTS: 1	DIF: a	a	REF:	2003 SOL
	OBJ:	Chemical Formulas and Reactions	STA: 0	Ch. 3c		
9.	ANS:	C PTS: 1	DIF: a	a	REF:	2009 SOL
	OBJ:	Molar Relationships	STA: 0	Ch. 4b		
10.	ANS:	D PTS: 1	DIF: 1	ζ.	OBJ:	Scientific Investigation
	STA:	Ch. 1g				
11.	ANS:	B PTS: 1	DIF: 1	k		
	OBJ:	Atomic Structure and Periodic Relat	tionships		STA:	Ch. 6a
12.	ANS:	C PTS: 1	DIF: 0	c	REF:	ncook
	OBJ:	Molar Relationships	STA: 0	Ch. 4b	MSC:	made it up
13.	ANS:	A PTS: 1	DIF: a	a	REF:	2009 SOL
	OBJ:	Phases of Matter and Kinetic Molec	ular Theo	ory	STA:	Ch. 5d
14.	ANS:	A PTS: 1	DIF: a	a	REF:	2003 SOL
	OBJ:	Molar Relationships	STA: 0	Ch. 4a		
15.	ANS:	B PTS: 1	DIF: 1	k		
	OBJ:	Atomic Structure and Periodic Relat	tionships		STA:	Ch. 2h
16.	ANS:		DIF: 0		OBJ:	Scientific Investigation
	STA:	ch.1a				
17.	ANS:	B PTS: 1	DIF: 1	K	OBJ:	Scientific Investigation
	STA:	Ch. 1a				C
18.	ANS:	B PTS: 1	DIF: 1	K	REF:	2007 SOL
	OBJ:	Chemical Formulas and Reactions	STA: 0	Ch. 3e		
	ANS:	D PTS: 1	DIF: 1	K	OBJ:	Scientific Investigation
19.		C1. 1.				8
19.	STA:	Cn. 1g				
19.20.		•	DIF: o	2	REF:	2005 SOL
	ANS:	•		2		2005 SOL Ch. 2f
	ANS: OBJ:	B PTS: 1 Atomic Structure and Periodic Relat			STA:	

22.		D PTS: 1 Molar Relationships	DIF: a	REF: 2001 SOL
23.	ANS:	A PTS: 1		REF: 2007 SOL
24	OBJ: ANS:	Scientific Investigation B PTS: 1	STA: Ch. 1g DIF: k	DEE. 2005 COL
24.		Chemical Formulas and Reactions		REF: 2005 SOL
25.			DIF: c	REF: 2000 SOL
		Atomic Structure and Periodic Relat	_	STA: Ch. 2i
26.	ANS:		DIF: a	REF: 2004 SOL
27.	OBJ:	Chemical Formulas and Reactions B PTS: 1	DIF: c	REF: dbutler
21.		Molar Relationships		MSC: Zumdahl 3rd Edition
28.		C PTS: 1		REF: tjones
_0.	OBJ:	Scientific Investigation	STA: Ch.1e	MSC: Made up
29.	ANS:	D PTS: 1	DIF: c	REF: 2000 SOL
	OBJ:	Scientific Investigation	STA: Ch. 1g	
30.	ANS:			REF: 2004 SOL
		Phases of Matter and Kinetic Molec		
31.	ANS:		DIF: k	REF: 2004 SOL
22		Phases of Matter and Kinetic Molec	•	STA: Ch. 5e
32.			DIF: k	STA: Ch. 2h
22	ANS:	Atomic Structure and Periodic Related C PTS: 1	-	REF: 2007 SOL
33.		Chemical Formulas and Reactions		REF. 2007 SOL
34.	ANS:		DIF: k	REF: 2007 SOL
		Chemical Formulas and Reactions		
35.	ANS:	C PTS: 1	DIF: a	REF: 2001 SOL
		Chemical Formulas and Reactions		
36.	ANS:		DIF: c	
		Atomic Structure and Periodic Relat		STA: Ch. 2h
37.	ANS:	B PTS: 1 Atomic Structure and Periodic Relat	DIF: k	REF: 2004 SOL
20	OBJ:	Atomic Structure and Periodic Relati		
38.	ANS:	D PTS: 1 Phases of Matter and Kinetic Molec	DIF: c	
20	ANS:		DIF: c	STA: Ch. 5e REF: 2000 SOL
33.		Scientific Investigation	STA: Ch. 1f	KET. 2000 SOL
40.	ANS:	<u> </u>	DIF: c	REF: 2009 SOL
		Chemical Formulas and Reactions		
41.	ANS:	C PTS: 1	DIF: c	REF: 2007 SOL
	OBJ:	Chemical Formulas and Reactions	STA: Ch. 3d	
42.	ANS:		DIF: a	REF: dbutler
		Molar Relationhips	STA: Ch. 4a	MSC: Zumdahl 3rd Edition
43.	ANS:		DIF: c	REF: 2009 SOL
		Chemical Formulas and Reactions		
44.	ANS:		DIF: a	CTA. Cl. 56
15		Phases of Matter and Kinetic Molec		STA: Ch. 5f
43.	ANS:	D PTS: 1 Molar Relationships	DIF: c STA: Ch. 4c	REF: 2004 SOL
	ODJ.	wioiai ixciationships	51A. CII. 40	

46.	ANS:		DIF: c	OBJ:	Chemical Formulas and Reactions
	STA:	Ch. 3a			
47.	ANS:	C PTS: 1	DIF: c	OBJ:	Molar Relationships
	STA:	Ch. 4c			
48.	ANS:	B PTS: 1	DIF: c		
	OBJ:	Atomic Structure and Periodic Relat	ionships	STA:	Ch. 2h
49.	ANS:	D PTS: 1	DIF: a	REF:	2000 SOL
	OBJ:	Phases of Matter and Kinetic Molec	ular Theory	STA:	Ch. 5b
50.	ANS:	A PTS: 1	DIF: c	REF:	tjones
	OBJ:	Scientific Investigation	STA: Ch. 1g		
51.	ANS:	A PTS: 1	DIF: k	REF:	2001 SOL
	OBJ:	Phases of Matter and Kinetic Molec	ular Theory	STA:	Ch. 5a
52.	ANS:	B PTS: 1	DIF: c	REF:	2003 SOL
	OBJ:	Chemical Formulas and Reactions	STA: Ch. 3d		
53.	ANS:	D PTS: 1	DIF: c	REF:	2003 SOL
	OBJ:	Atomic Structure and Periodic Relat	ionships	STA:	Ch. 2a
54.	ANS:	B PTS: 1	DIF: c	REF:	2007 SOL
	OBJ:	Molar Relationships	STA: Ch. 4a		
55.	ANS:	D PTS: 1	DIF: k	REF:	ncook
	OBJ:	Chemical Formulas and Reactions	STA: Ch. 3d	MSC:	made it up
56.	ANS:	C PTS: 1	DIF: k	REF:	2001 SOL
	OBJ:	Phases of Matter and Kinetic Molec	ular Theory	STA:	Ch. 5a
57.	ANS:	A PTS: 1	DIF: c	OBJ:	Scientific Investigation
	STA:	Ch. 1a			
58.	ANS:	C PTS: 1	DIF: k	REF:	2005 SOL
	OBJ:	Chemical Formulas and Reactions	STA: Ch. 3c		
59.	ANS:	B PTS: 1	DIF: k	REF:	2005 SOL
	OBJ:	Atomic Structure and Periodic Relat	ionships	STA:	Ch. 2d
60.	ANS:	B PTS: 1	DIF: c	REF:	2004 SOL
	OBJ:	Atomic Structure and Periodic Relat	ionships	STA:	Ch. 2g