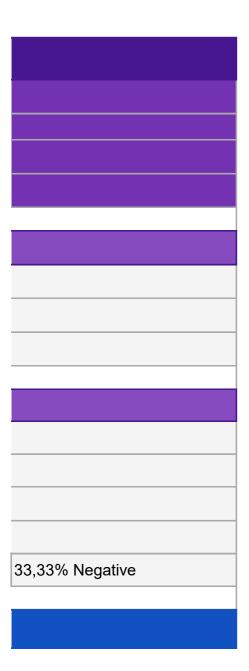
block 5 ionization energy, maddie, macon, jaso

Played on	12 Nov 2019
Hosted by	maddienicks
Played with	25 players
Played	11 of 11

Overall PerformanceTotal correct answers (%)67,27%Total incorrect answers (%)32,73%Average score (points)7576,8


Feedback	
Number of responses	9
How fun was it? (out of 5)	2,60 o
Did you learn something?	40,000
Do you recommend it?	40,000
How do you feel?	•

Switch tabs/pages to view other result breakdown

Overview

on, owen			
%			
%			
38 points			
ut of 5			
% Yes	60,00	60,00% No	
% Yes	60,00	60,00% No	
22,22% Positive	•	44,44% Neutral	•

Overview

block 5 ionization energy, maddie, mace

Final Soc	roo
Final Sco	
Rank	Players
1	maddie
2	Alec S
3	Lindsey
4	Owen
5	Macon
6	Liam
7	mckenna
8	Max
9	sydney
10	ben dover
11	david
12	julia
13	Bo Kites Truck
14	Michael
15	jason
16	Ashley
17	Shane
18	Sebastian :D
19	ok boomer
20	Chelsea
21	Katie
22	Gina

Final Scores

23	Rhys
24	Dahlia
25	Camden

Final Scores

on, jason, owen Total Score (points) **Correct Answers** Incorrect Answers

Final Scores

4645	5	6
1775	2	9
0	0	11

block 5 ionization energy, maddie, macon, jason, ov

Kahoot! Sur	nmary
Rank	Players
1	maddie
2	Alec S
3	Lindsey
4	Owen
5	Macon
6	Liam
7	mckenna
8	Max
9	sydney
10	ben dover
11	david
12	julia
13	Bo Kites Truck
14	Michael
15	jason

16	Ashley
17	Shane
18	Sebastian :D
19	ok boomer
20	Chelsea
21	Katie
22	Gina
23	Rhys
24	Dahlia
25	Camden

	ot. Buillinary
ven	
Total Score (points)	Q1
11257	954
10881	943
10858	973
10855	953
10659	966
10576	894
9298	923
8792	934
8321	937
8243	955
8203	946
8142	916
7721	933
7604	960
7190	983

6917	955
6694	934
6449	944
6272	933
6169	969
5993	889
5908	0
4645	876
1775	0
0	0

What is the definition/ main purpose of the Ionization energy trend?	Q2
the energy required to REMOVE an electron from an atom in gas phase	1085
the energy required to REMOVE an electron from an atom in gas phase	1061
the energy required to REMOVE an electron from an atom in gas phase	1047
the energy required to REMOVE an electron from an atom in gas phase	1086
the energy required to REMOVE an electron from an atom in gas phase	1078
the energy required to REMOVE an electron from an atom in gas phase	1068
the energy required to REMOVE an electron from an atom in gas phase	1028
the energy required to REMOVE an electron from an atom in gas phase	1086
the energy required to REMOVE an electron from an atom in gas phase	1073
the energy required to REMOVE an electron from an atom in gas phase	1093
the energy required to REMOVE an electron from an atom in gas phase	1079
the energy required to REMOVE an electron from an atom in gas phase	1064
the energy required to REMOVE an electron from an atom in gas phase	1068
the energy required to REMOVE an electron from an atom in gas phase	1069
the energy required to REMOVE an electron from an atom in gas phase	1089

the energy required to REMOVE an electron from an atom in gas phase	1091
the energy required to REMOVE an electron from an atom in gas phase	1061
the energy required to REMOVE an electron from an atom in gas phase	0
the energy required to REMOVE an electron from an atom in gas phase	0
the energy required to REMOVE an electron from an atom in gas phase	1084
the energy required to REMOVE an electron from an atom in gas phase	1078
involves size of the nucleus it required it to be smaller rather then big	0
the energy required to REMOVE an electron from an atom in gas phase	1076
	892
	0

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules	Q3
True	1128
True	900
True	1085
True	943
True	745
True	820
True	925
True	0
True	1138
True	1153
True	1090
True	1085
True	1128
True	1055
True	0

True	1153
True	1090
False	888
False	805
True	1083
True	1058
False	893
True	1035
True	0
	0

Ionization energy trends move from	Q4
left to right	0
left to right	1247
left to right	1279
left to right	1203
left to right	0
left to right	1196
left to right	1259
up to down	979
left to right	1288
left to right	0
left to right	0
left to right	1277
left to right	0
left to right	0
down to up	0

left to right	0
left to right	0
left to right	0
left to right	1088
left to right	1290
left to right	1281
left to right	1058
left to right	0
	883
	0

Noble gases, having very LOW ionization energy, increases in energy as you go up the group	Q5
True	580
False	0
False	1023
False	0
True	563
False	0
False	0
False	760
False	1070
True	0
True	0
False	1035
True	830
True	735
True	0

True	875
True	0
True	568
False	0
False	0
False	0
False	1058
True	0
False	0
	0

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest	Q6
The smallest group value for this trend is alkali metals.	1026
	881
The largest group value for this trend is noble gases.	0
	896
The smallest group value for this trend is alkali metals.	1017
	884
	0
The largest group value for this trend is noble gases.	1123
The largest group value for this trend is noble gases.	0
	0
	916
The largest group value for this trend is noble gases.	0
The largest group value for this trend is noble gases.	0
The largest group value for this trend is noble gases.	0
The smallest group value for this trend is noble	939

The largest group value for this trend is noble gases.	1039
	0
The largest group value for this trend is noble gases.	0
	0
	0
	0
The largest group value for this trend is noble gases.	1254
	0
	0
	0

How the trend is different from metals	Q7
they are happy to lose electron because it satisfies the octet rule	1160
they are happy to lose electron because it satisfies the octet rule	1027
they are happy to gain to become stronger	949
they are happy to lose electron because it satisfies the octet rule	1008
they are happy to lose electron because it satisfies the octet rule	1105
they are happy to lose electron because it satisfies the octet rule	968
they are happy to gain to become stronger	848
they are happy to lose electron because it satisfies the octet rule	1250
they are happy to gain to become stronger	860
	782
they are happy to lose electron because it satisfies the octet rule	1043
they are happy to gain to become stronger	844
they don't want to lose so it takes more energy to hold onto all them	973
they don't want to lose so it takes more energy to hold onto all them	958
they are happy to lose electron because it satisfies the octet rule	1004

	they are happy to lose electron because it satisfies the octet rule
u unx	they don't want to lose so it takes more energy to hold onto all them
N.3h	they don't want to lose so it takes more energy to hold onto all them
798	they are happy to gain to become stronger
	they don't want to lose so it takes more energy to hold onto all them
	they don't want to lose so it takes more energy to hold onto all them
	they are happy to lose electron because it satisfies the octet rule
	they don't want to lose so it takes more energy to hold onto all them
	they don't want to lose so it takes more energy to hold onto all them
0	

How the trend is different from non-metals	Q8
don't want to lose, it takes more energy to hold onto all the electrons	1230
don't want to lose, it takes more energy to hold onto all the electrons	1060
don't want to lose, it takes more energy to hold onto all the electrons	1047
don't want to lose, it takes more energy to hold onto all the electrons	1041
don't want to lose, it takes more energy to hold onto all the electrons	1197
don't want to lose, it takes more energy to hold onto all the electrons	1080
don't want to lose, it takes more energy to hold onto all the electrons	1026
don't want to lose, it takes more energy to hold onto all the electrons	1347
don't want to lose, it takes more energy to hold onto all the electrons	1062
don't want to lose, it takes more energy to hold onto all the electrons	1055
don't want to lose, it takes more energy to hold onto all the electrons	1118
don't want to lose, it takes more energy to hold onto all the electrons	1033
don't want to lose, it takes more energy to hold onto all the electrons	1078
don't want to lose, it takes more energy to hold onto all the electrons	1068
don't want to lose, it takes more energy to hold onto all the electrons	1037

they want to gain so they can lose more electrons	0
don't want to lose, it takes more energy to hold onto all the electrons	1001
don't want to lose, it takes more energy to hold onto all the electrons	1013
don't want to lose, it takes more energy to hold onto all the electrons	925
they want to lose so they can gain more protons	908
they want to gain so they can lose more electrons	899
they want to gain so they can lose more electrons	0
they want to lose so they can gain more protons	853
	0
	0

How does covalent bonding affects bonds	Q9
2 atoms of elements with similar electronegativity tend to form covalent	1377
2 atoms of elements with similar electronegativity tend to form covalent	1196
2 atoms of elements with similar electronegativity tend to form covalent	1063
2 atoms of elements with similar electronegativity tend to form covalent	1226
2 atoms of elements with similar electronegativity tend to form covalent	1303
2 atoms of elements with similar electronegativity tend to form covalent	1188
2 atoms of elements with similar electronegativity tend to form covalent	1047
2 atoms of elements with similar electronegativity tend to form covalent	1313
2 atoms of elements with similar electronegativity tend to form covalent	893
2 atoms of elements with similar electronegativity tend to form covalent	951
2 atoms of elements with similar electronegativity tend to form covalent	1268
2 atoms of elements with similar electronegativity tend to form covalent	888
2 atoms of elements with similar electronegativity tend to form covalent	901
2 atoms of elements with similar electronegativity tend to form covalent	1054
2 atoms of elements with similar electronegativity tend to form covalent	1223

	845
2 atoms of elements with similar electronegativity tend to form covalent	902
2 atoms of elements with similar electronegativity tend to form covalent	1037
2 atoms of elements with similar electronegativity tend to form covalent	0
2 atoms of elements with similar electronegativity tend to form covalent	0
2 atoms of elements with similar electronegativity tend to form covalent	0
4 atoms of elements with similar electronegativity trend to from covalent	0
2 atoms of elements with similar electronegativity tend to form covalent	0
	0
	0

How does bonds polarity affects ionization	Q10
Intermediate differences in electronegativity between covalent and polarity	1449
Intermediate differences in electronegativity between covalent and polarity	1338
Intermediate differences in electronegativity between covalent and polarity	1264
Intermediate differences in electronegativity between covalent and polarity	1339
Intermediate differences in electronegativity between covalent and polarity	1442
Intermediate differences in electronegativity between covalent and polarity	1308
Intermediate differences in electronegativity between covalent and polarity	1207
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	1089
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	0

Intermediate differences in electronegativity between covalent and polarity	959
Intermediate differences in electronegativity between covalent and polarity	0
Intermediate differences in electronegativity between covalent and polarity	1163
the differences of electronegativity can change the neutrons and elements	860
the differences of electronegativity can change the protons and elements	0
the differences of electronegativity can change the protons and elements	0
the gaining of the electronegativity changes the intermediate difference	850
the differences of electronegativity can change the protons and elements	0
the differences of electronegativity can change the neutrons and elements	0
	0

How does ionic bonding affect ionization	Q11
low ionization atom encounters an atom with high electron, transfer occurs	1268
low ionization atom encounters an atom with high electron, transfer occurs	1228
low ionization atom encounters an atom with high electron, transfer occurs	1128
low ionization atom encounters an atom with high electron, transfer occurs	1160
low ionization atom encounters an atom with high electron, transfer occurs	1243
low ionization atom encounters an atom with high electron, transfer occurs	1170
low ionization atom encounters an atom with high electron, transfer occurs	1035
high ionization atom encounters an atom with low electron, transfer occurs	0
high ionization atom encounters an atom with low electron, transfer occurs	0
low ionization atom encounters an atom with high electron, transfer occurs	1165
neutral ionization atom encounters an atom with low electron,transfer occur	743
high ionization atom encounters an atom with low electron, transfer occurs	0
high ionization atom encounters an atom with low electron, transfer occurs	810
	705
high ionization atom encounters an atom with low electron, transfer occurs	915

low ionization atom encounters an atom with high electron, transfer occurs	0
high ionization atom encounters an atom with low electron, transfer occurs	738
low ionization atom encounters an atom with high electron, transfer occurs	0
low ionization atom encounters an atom with high electron, transfer occurs	863
neutral ionization atom encounters an atom with low electron,transfer occur	835
neutral ionization atom encounters an atom with low electron,transfer occur	788
low ionization atom encounters an atom with high electron, transfer occurs	795
neutral ionization atom encounters an atom with low electron,transfer occur	805
	0
	0

how does any trend effect ionization
It becomes harder to remove electrons.
it adds new protons to the elements
It becomes easier to remove electrons.
It becomes harder to remove electrons.
It becomes harder to remove electrons.
It becomes easier to remove electrons.
It becomes harder to remove electrons.
It becomes harder to remove electrons.
It becomes harder to remove electrons.

It becomes easier to remove electrons.
It becomes harder to remove electrons.
It becomes easier to remove electrons.
It becomes harder to remove electrons.

block 5 ic

1 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jason, owen	
What is the definition/ main purpose of the lonizat	ion energy tren
;	the energ
(%)	88,00%
on	60 secor
nmary	
	<u> </u>
ɔt?	
rers received	
ken to answer (seconds)	
ails	
	A
	Answer
	√ □
	√ □
	√ □
	X
	√ □
	Х
	Х
	√□
	√ □
	√ □

√
√ □
√ 0
√ □

d?

gy required to REMOVE an electron from an atom in gas phas

nds

the energy required to REMOVE an electron from	
an atom in das phase	
√ □	
22	
7,26	

	Score (p
the energy required to REMOVE an electron from an atom in gas phase	943
the energy required to REMOVE an electron from an atom in gas phase	955
the energy required to REMOVE an electron from an atom in gas phase	933
	0
the energy required to REMOVE an electron from an atom in gas phase	969
	0
involves size of the nucleus it required it to be smaller rather then big	0
the energy required to REMOVE an electron from an atom in gas phase	889
the energy required to REMOVE an electron from an atom in gas phase	894
the energy required to REMOVE an electron from an atom in gas phase	973

the energy required to REMOVE an electron from	966
an atom in gas phase	
the energy required to REMOVE an electron from	934
an atom in gas phase	
the energy required to REMOVE an electron from	960
an atom in gas phase	
the energy required to REMOVE an electron from	953
an atom in gas phase	
the energy required to REMOVE an electron from	876
an atom in gas phase	
the energy required to REMOVE an electron from	944
an atom in gas phase	
the energy required to REMOVE an electron from	934
an atom in gas phase	
the energy required to REMOVE an electron from	955
an atom in gas phase	
the energy required to REMOVE an electron from	946
an atom in gas phase	
the energy required to REMOVE an electron from	983
an atom in gas phase	
the energy required to REMOVE an electron from	916
an atom in gas phase	
the energy required to REMOVE an electron from	954
an atom in gas phase	
the energy required to REMOVE an electron from	923
an atom in gas phase	
the energy required to REMOVE an electron from	933
an atom in gas phase	
the energy required to REMOVE an electron from	937
an atom in gas phase	

ie			

the energy required to ADD an electron to an atom	
in the gas phase	
X	
0	
0,00	

oints)	Current
	943
	955
	933
	0
	969
	0
	0
	889
	894
	973

966
934
960
953
876
944
934
955
946
983
916
954
923
933
937

involves size of the nucleus it required it to be smaller rather then big	
X	
1	
13,00	

Total Score (points)	Answer ti
	6,8
	5,4
	8,1
	60
	3,7
	60
	13
	13,3
	12,7
	3,3

4,1 7,9 4,8 5,6 14,9 6,7 7,9 5,4 6,5 2,1 10,1 5,5 9,3 8 7,6	
4,8 5,6 14,9 6,7 7,9 5,4 6,5 2,1 10,1 5,5 9,3 8	4,1
5,6 14,9 6,7 7,9 5,4 6,5 2,1 10,1 5,5 9,3	7,9
14,9 6,7 7,9 5,4 6,5 2,1 10,1 5,5 9,3 8	4,8
6,7 7,9 5,4 6,5 2,1 10,1 5,5 9,3 8	5,6
7,9 5,4 6,5 2,1 10,1 5,5 9,3 8	14,9
5,4 6,5 2,1 10,1 5,5 9,3	6,7
6,5 2,1 10,1 5,5 9,3 8	7,9
2,1 10,1 5,5 9,3 8	5,4
10,1 5,5 9,3 8	6,5
5,5 9,3 8	2,1
9,3	10,1
8	5,5
	9,3
7,6	8
	7,6
	7,6

involves size of the nucleus it required it to be	
bigger rather then small	
X	
	0
	0,00
	0,00
ime (seconds)	

block 5 ic

2 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

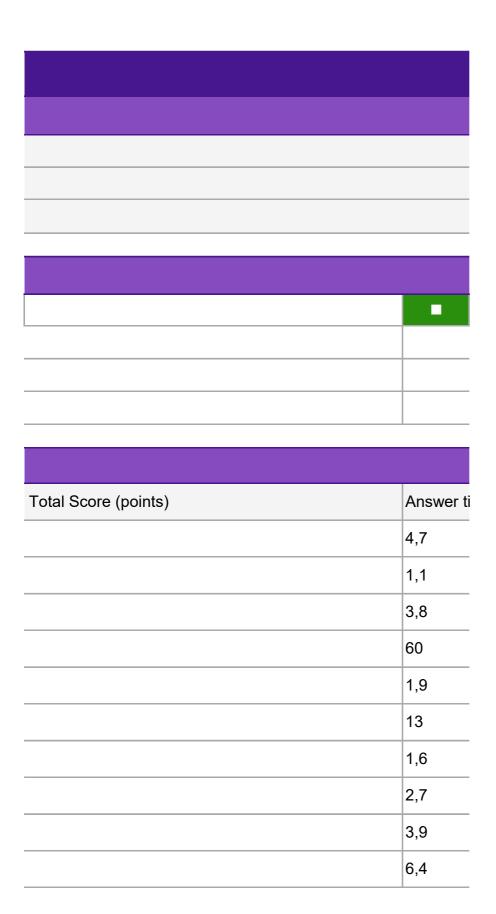
nization energy, maddie, macon, jason, owen		
true/false when measuring lonization energy we is measure	ed per	
}	True	
(%)	84,00%	
n	60 secor	
nmary		
	A	
ot?		
rers received		
ken to answer (seconds)		
ails		
	Answer	
	√ □	
	√ □	
	√ □	
	Х	
	√ □	
	√ □	
	Х	
	√ □	
	√ □	
	√ □	

√ □
√ □
√ □
√ □
√ □
Х
√ □
Х
√ □

mole of atoms or molecules and expressed in
nds

False			*
	X		
		3	
		3,83	

	Score (p
True	1061
True	1091
True	1068
	0
True	1084
True	892
False	0
True	1078
True	1068
True	1047


_	
True	1078
True	1086
True	1069
True	1086
True	1076
False	0
True	1061
True	1093
True	1079
True	1089
True	1064
True	1085
True	1028
False	0
True	1073

kiloJoules		

True			•
	√ 1		
		21	
		3,70	

oints)	Current
	2004
	2046
	2001
	0
	2053
	892
	0
	1967
	1962
	2020
	-

2044
2020
2029
2039
1952
944
1995
2048
2025
2072
1980
2039
1951
933
2010

2,7
1,7
3,7
1,7
2,9
5,7
4,7
0,9
2,5
1,3
4,3
1,8
8,7
4,2
3,2

ime (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		

block 5 ic

3 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

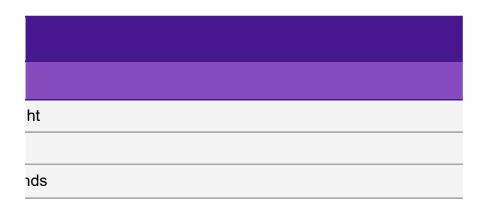
Camden

Chelsea

Dahlia

Gina

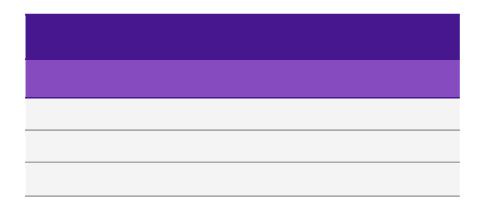
Katie


Liam

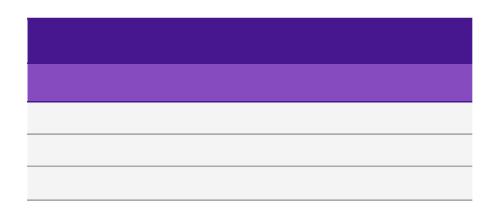
Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jasor	ı, owen
lonization energy trends move from	
;	left to rig
(%)	84,00%
n	20 secor
nmary	
	<u> </u>
zt?	
vers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	√ □
	×
	√ □
	Х
	√ □
	√ □
	√ □


√ □
Х
√ Ω
√ □
√ Ω
Х
√ □
√ □
√ □
√ Ω
√ Ω

	Score (p
left to right	900
left to right	1153
left to right	1128
	0
left to right	1083
	0
left to right	893
left to right	1058
left to right	820
left to right	1085


left to right	745
up to down	0
left to right	1055
left to right	943
left to right	1035
left to right	888
left to right	1090
left to right	1153
left to right	1090
down to up	0
left to right	1085
left to right	1128
left to right	925
left to right	805
left to right	1138

right to left		•
X		
	0	
	0,00	

oints)	Current
	2904
	3199
	3129
	0
	3136
	892
	893
	3025
	2782
	3105

2789
2020
3084
2982
2987
1832
3085
3201
3115
2072
3065
3167
2876
1738
3148
-

up to down	-
X	
1	
4,70	

Total Score (points)	Answer ti
	12
	1,9
	2,9
	20
	4,7
	20
	4,3
	5,7
	15,2
	4,6

18,2
4,7
5,8
10,3
6,6
4,5
4,4
1,9
4,4
2
4,6
2,9
11
7,8
2,5

left to right	
√ □	24
	21
	6,49
ime (seconds)	
ille (secolids)	

block 5 ic

4 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

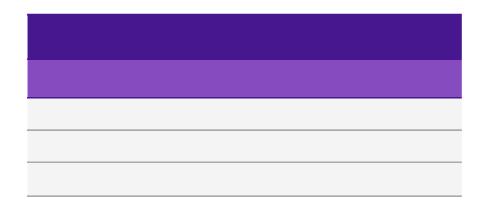
Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jason, owen		
Noble gases, having very LOW ionization energy, increases in energy		
}	False	
(%)	52,00%	
on	60 secor	
nmary		
	A	
pt?		
vers received		
ken to answer (seconds)		
ails		
	Answer	
	√ □	
	Х	
	Х	
	Х	
	√ □	
	√ □	
	√ □	


Х
√ Ω
Х
√ □
Х
Х
Х
Х
Х
Х
√ □
Х
√ □
√ □
√ □

ergy as you go up the group	
nds	

False	*
√ □	
13	
5,28	

	Score (p
False	1247
True	0
True	0
	0
False	1290
False	883
False	1058
False	1281
False	1196
False	1279

True	0
False	979
True	0
False	1203
True	0
False	1277
True	0
False	1259
False	1088
False	1288

True			•
	X		
		11	
		4,41	

oints)	Current
	4151
	3199
	3129
	0
	4426
	1775
	1951
	4306
	3978
	4384

2789
2999
3084
4185
2987
1832
3085
3201
3115
2072
4342
3167
4135
2826
4436

T. () () ()	
Total Score (points)	Answer ti
Total Score (points)	
Total Score (points)	Answer ti 6,4
Total Score (points)	
Total Score (points)	6,4 1,5
Total Score (points)	6,4
Total Score (points)	6,4 1,5 5,6
Total Score (points)	6,4 1,5 5,6 60
Total Score (points)	6,4 1,5 5,6
Total Score (points)	6,4 1,5 5,6 60 1,2
Total Score (points)	6,4 1,5 5,6 60
Total Score (points)	6,4 1,5 5,6 60 1,2
Total Score (points)	6,4 1,5 5,6 60 1,2 14
Total Score (points)	6,4 1,5 5,6 60 1,2 14
Total Score (points)	6,4 1,5 5,6 60 1,2 14 5 2,3
Total Score (points)	6,4 1,5 5,6 60 1,2 14

8,2
2,5
5
11,6
3,4
5,1
4,8
5,6
5,1
0,6
2,8
3,6
4,9
1,5
1,4

ime (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		
ime (seconds)		

block 5 ic

5 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jason, owen	
Large/small values for ionization energy trends (there will I	oe two
}	The large
(%)	44,00%
n	20 secor
nmary	
	A
pt?	
vers received	
ken to answer (seconds)	
ails	
	Answer
	Х
	√ □
	√ □
	Х
	Х
	Х
	√ □
	X
	Х
	√ □

√ □
√ 0
√ □
Х
Х
√ □
Х
Х
Х
Х
√ □
√ □
Х
Х
√ □

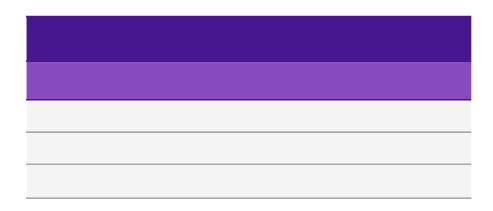
correct answers one for largest and one for sr

est group value for this trend is noble gases. , The smallest gi

nds

The smallest group value for this trend is noble	
gasses	
X	
1	
5,80	

	Score (p
	0
The largest group value for this trend is noble gases.	875
The largest group value for this trend is noble gases.	830
	0
	0
	0
The largest group value for this trend is noble gases.	1058
	0
	0
The largest group value for this trend is noble gases.	1023


The smallest group value for this trend is alkali	563
metals. The largest group value for this trend is noble	
gases.	760
The largest group value for this trend is noble gases.	735
	0
	0
The largest group value for this trend is noble gases.	568
	0
	0
	0
The smallest group value for this trend is noble gasses	0
The largest group value for this trend is noble gases.	1035
The smallest group value for this trend is alkali metals.	580
	0
	0
The largest group value for this trend is noble gases.	1070

nallest roup value for this trend is alkali metals.

The largest group value for this trend is noble	
dases.	
√□	
9	
11,32	

oints)	Current
	4151
	4074
	3959
	0
	4426
	1775
	3009
	4306
	3978
	5407

3352
3759
3819
4185
2987
2400
3085
3201
3115
2072
5377
3747
4135
2826
5506

The largest group value for this trend is alkali	
metals.	
^	
0	
0,00	

Total Score (points)	Answer ti
	20
	5
	6,8
	20
	20
	20
	5,7
	20
	20
	15,1

17,5
13,6
10,6
20
20
17,3
20
20
20
5,8
14,6
16,8
20
20
13,2
-

The smallest group value for this trend is alkali	
metals.	
√ □	
	2
1	7,15
ime (seconds)	

block 5 ic

6 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, r	nacon, jason, owen
How the trend is different from m	etals
;	th
(%)	40,00%
on	60 secon
nmary	
xt?	
ers received	
ken to answer (seconds)	
ails	Answer
	√ □
	√ □
	Х
	Х
	X
	X
	√ □
	X
	√ □
	X

√ □
√ □
Х
√ □
Х
Х
Х
Х
√ □
√ □
Х
√ ∆
Х
Х
Х

ney are happy to lose electron because it satisfies the octet rule

nds

they are happy to gain to become stronger		*
X		
	5	
	9,32	

	Score (p
they are happy to lose electron because it satisfies the octet rule	881
they are happy to lose electron because it satisfies the octet rule	1039
they don't want to lose so it takes more energy to hold onto all them	0
	0
they don't want to lose so it takes more energy to hold onto all them	0
they don't want to lose so it takes more energy to hold onto all them	0
they are happy to lose electron because it satisfies the octet rule	1254
they don't want to lose so it takes more energy to hold onto all them	0
they are happy to lose electron because it satisfies the octet rule	884
they are happy to gain to become stronger	0

they are happy to lose electron because it satisfies the octet rule	1017
they are happy to lose electron because it	1123
satisfies the octet rule	1120
they don't want to lose so it takes more	0
energy to hold onto all them	
they are happy to lose electron because it	896
satisfies the octet rule	
they don't want to lose so it takes more	0
energy to hold onto all them	
they don't want to lose so it takes more energy to hold onto all them	0
they don't want to lose so it takes more	
energy to hold onto all them	0
onergy to here one an erem	_
	0
they are happy to lose electron because it	916
satisfies the octet rule	310
they are happy to lose electron because it	939
satisfies the octet rule	303
they are happy to gain to become stronger	0
they are happy to lose electron because it	1026
satisfies the octet rule	1026
they are happy to gain to become stronger	0
they are happy to gain to become stronger	0
they are happy to gain to become stronger	0

e 			

they don't want to lose so it takes more	
energy to hold onto all them	
X	
8	
8,09	

oints)	Current
	5032
	5113
	3959
	0
	4426
	1775
	4263
	4306
	4862
	5407

4369
4882
3819
5081
2987
2400
3085
3201
4031
3011
5377
4773
4135
2826
5506

they are happy to lose electron because it	
satisfies the octet rule	
√ □	
10	
9,90	

Total Score (points)	Answer ti
	14,3
	7,3
	7,8
	60
	4,3
	9,8
	5,5
	7,4
	13,9
	7,2

10
9,2
10,4
12,5
11,4
4,2
9,4
60
10,1
7,3
7,6
8,9
10,5
15
6,3

ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		

block 5 ic

7 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

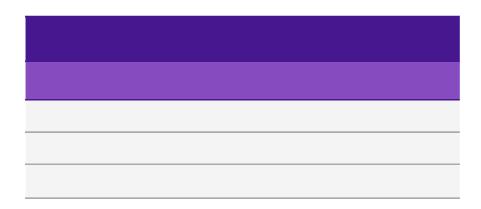
Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jason, owen		
How the trend is different from non-metals		
;	don't wa	
(%)	72,00%	
n	60 secor	
nmary		
pt?		
vers received		
ken to answer (seconds)		
ails		
	Answer	
	√ □	
	Х	
	√ □	
	Х	
	Х	
	Х	
	Х	
	Х	
	√ □	
	√□	

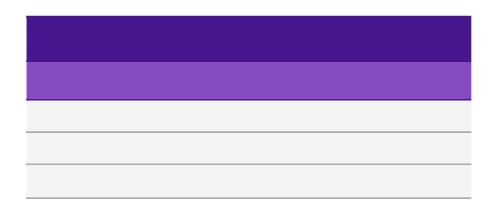
√ □
√ □
√ □
√ □
Х
√ ∆
√ □


nt to lose, it takes more energy to hold onto all the electrons

nds

gain more electrons to become a better element	*
X	
0	
0,00	

	Score (p
don't want to lose, it takes more energy to hold onto all the electrons	1027
they want to gain so they can lose more electrons	0
don't want to lose, it takes more energy to hold onto all the electrons	973
	0
they want to lose so they can gain more protons	0
	0
they want to gain so they can lose more electrons	0
they want to gain so they can lose more electrons	0
don't want to lose, it takes more energy to hold onto all the electrons	968
don't want to lose, it takes more energy to hold onto all the electrons	949


don't want to lose, it takes more energy to hold onto all the electrons	1105
don't want to lose, it takes more energy to hold onto all the electrons	1250
don't want to lose, it takes more energy to hold onto all the electrons	958
don't want to lose, it takes more energy to hold onto all the electrons	1008
they want to lose so they can gain more protons	0
don't want to lose, it takes more energy to hold onto all the electrons	836
don't want to lose, it takes more energy to hold onto all the electrons	968
don't want to lose, it takes more energy to hold onto all the electrons	782
don't want to lose, it takes more energy to hold onto all the electrons	1043
don't want to lose, it takes more energy to hold onto all the electrons	1004
don't want to lose, it takes more energy to hold onto all the electrons	844
don't want to lose, it takes more energy to hold onto all the electrons	1160
don't want to lose, it takes more energy to hold onto all the electrons	848
don't want to lose, it takes more energy to hold onto all the electrons	798
don't want to lose, it takes more energy to hold onto all the electrons	860

they want to gain so they can lose more electrons	•
X	
3	
8,63	

Currer 6059 5113 4932 0 4426 1775 4263 4306 5830 6356		
5113 4932 0 4426 1775 4263 4306 5830	oints)	Current
4932 0 4426 1775 4263 4306 5830		6059
0 4426 1775 4263 4306 5830		5113
4426 1775 4263 4306 5830		4932
1775 4263 4306 5830		0
4263 4306 5830		4426
4306 5830		1775
5830		4263
		4306
6356		5830
		6356

5474
6132
4777
6089
2987
3236
4053
3983
5074
4015
6221
5933
4983
3624
6366

they want to lose so they can gain more protons	
X	
2	
13,20	

Total Score (points)	Answer ti
	8,8
	2,6
	3,2
	60
	12,2
	60
	19,1
	4,2
	15,8
	6,1

11,4
6
5,1
11,1
14,2
19,7
3,9
26,2
6,8
11,5
18,7
4,8
18,2
24,3
16,8

don't want to lose, it takes more energy to hold onto
all the electrons √□
18
12,13
me (seconds)

block 5 ic

8 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

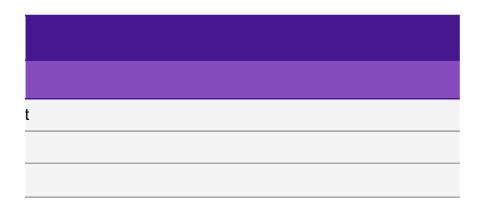
Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

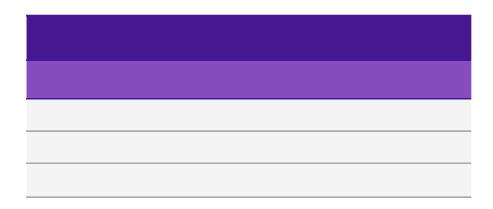
nization energy, maddie, macon, jason, o	wen
How does covalent bonding affects bonds	
	2 atoms
%)	84,00%
n	60 secor
nmary	
	A
t?	
ers received	
ten to answer (seconds)	
nils	
	Answer
	√ □
	Х
	√ □
	Х
	√ □
	Х
	Х
	√0
	√ □
	√ □


√ □
√ Ω
√ Ω
√ □

of elements with similar electronegativity tend to form covalends

2 atoms of elements with similar electronegativity	
tend to form covalent	V
√ □	
21	
11,00	

	Score (p
2 atoms of elements with similar electronegativity tend to form covalent	1060
	0
2 atoms of elements with similar electronegativity tend to form covalent	1078
	0
2 atoms of elements with similar electronegativity tend to form covalent	908
	0
4 atoms of elements with similar electronegativity trend to from covalent	0
2 atoms of elements with similar electronegativity tend to form covalent	899
2 atoms of elements with similar electronegativity tend to form covalent	1080
2 atoms of elements with similar electronegativity tend to form covalent	1047


2 atoms of elements with similar electronegativity tend to form covalent	1197
2 atoms of elements with similar electronegativity	1347
tend to form covalent	1341
2 atoms of elements with similar electronegativity	1068
tend to form covalent	1000
2 atoms of elements with similar electronegativity	1041
tend to form covalent	
2 atoms of elements with similar electronegativity	853
tend to form covalent	
2 atoms of elements with similar electronegativity	1013
tend to form covalent 2 atoms of elements with similar electronegativity	
tend to form covalent	1001
2 atoms of elements with similar electronegativity	
tend to form covalent	1055
2 atoms of elements with similar electronegativity	1110
tend to form covalent	1118
2 atoms of elements with similar electronegativity	4007
tend to form covalent	1037
2 atoms of elements with similar electronegativity	1033
tend to form covalent	1000
2 atoms of elements with similar electronegativity	1230
tend to form covalent	1200
2 atoms of elements with similar electronegativity	1026
tend to form covalent	
2 atoms of elements with similar electronegativity	925
tend to form covalent	1
2 atoms of elements with similar electronegativity	1062
tend to form covalent	

gains protons and looses electrons	•
X	
0	
0,00	

oints)	Current
	7119
	5113
	6010
	0
	5334
	1775
	4263
	5205
	6910
	7403

6671
7479
5845
7130
3840
4249
5054
5038
6192
5052
7254
7163
6009
4549
7428

lose electrons and gains protons	
X	
0	
0,00	

Total Score (points)	Answer ti
	16,8
	60
	2,7
	60
	11,1
	60
	16,1
	12,1
	14,4
	6,4

12,4
6,4
3,8
19,1
17,7
10,4
11,9
5,4
9,8
19,6
8
8,4
8,9
21
4,6

	-
4 atoms of elements with similar electronegativity	
trend to from covalent	
X	
	1
16,1	0
ime (seconds)	
	-

block 5 ic

9 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, mad	on, jason, owen
How does bonds polarity affects ioni	zation
;	Intermed
(%)	72,00%
n	60 secor
nmary	
/ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	√ □
	Х
	Х
	Х
	Х
	Х
	√ □
	<u>√</u> □

√ □
√ □
√ □
√ □
X
√ □
Х
√ □

liate differences in electronegativity between covalent and pola

nds

the differences of electronegativity can change the	
neutrons and elements	
X	
2	
16,15	

	Score (p
Intermediate differences in electronegativity between covalent and polarity	1196
Intermediate differences in electronegativity between covalent and polarity	845
Intermediate differences in electronegativity between covalent and polarity	901
	0
the differences of electronegativity can change the protons and elements	0
the differences of electronegativity can change the neutrons and elements	0
the gaining of the electronegativity changes the intermediate difference	0
the differences of electronegativity can change the protons and elements	0
Intermediate differences in electronegativity between covalent and polarity	1188
Intermediate differences in electronegativity between covalent and polarity	1063

Intermediate differences in electronegativity	1303
between covalent and polarity	-
Intermediate differences in electronegativity	1313
between covalent and polarity	
Intermediate differences in electronegativity	1054
between covalent and polarity	
Intermediate differences in electronegativity	1226
between covalent and polarity	
the differences of electronegativity can change the	0
protons and elements	
Intermediate differences in electronegativity	1037
between covalent and polarity	
Intermediate differences in electronegativity	902
between covalent and polarity	
Intermediate differences in electronegativity	951
between covalent and polarity	
Intermediate differences in electronegativity	1268
between covalent and polarity	
Intermediate differences in electronegativity	1223
between covalent and polarity	
Intermediate differences in electronegativity	888
between covalent and polarity	
Intermediate differences in electronegativity	1377
between covalent and polarity	
Intermediate differences in electronegativity	1047
between covalent and polarity	-
the differences of electronegativity can change the	0
neutrons and elements	
Intermediate differences in electronegativity	893
between covalent and polarity	

arity			

the differences of electronegativity can change the	
protons and elements	
X	
3	
3,67	

oints)	Current
	8315
	5958
	6911
	0
	5334
	1775
	4263
	5205
	8098
	8466

7974
8792
6899
8356
3840
5286
5956
5989
7460
6275
8142
8540
7056
4549
8321

Intermediate differences in electronegativity	
between covalent and polarity	
√ □	
18	
19,52	

Total Score (points)	Answer ti
	12,5
	18,6
	35,9
	60
	2,6
	6,6
	22,8
	4
	13,5
	16,5

11,7
22,5
17,5
8,9
4,4
19,6
35,8
29,9
3,9
9,2
37,4
2,8
18,4
25,7
36,8

the gaining of the electronegativity changes t	ne
intermediate difference	
X	
	1
	22,80
me (seconds)	

block 5 ic

10 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

Camden

Chelsea

Dahlia

Gina

Katie

Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, macon, jason	, owen
How does ionic bonding affect ionization	
;	low ioniz
(%)	48,00%
on	60 secor
nmary	
	<u> </u>
zt?	
/ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	×
	Х
	Х
	Х
	√ □
	Х
	√ □
	√ □

√ □
Х
Х
√ □
Х
√ □
Х
√ □
Х
Х
Х
√ □
√ □
√ □
Х

ation atom encounters an atom with high electron, transfer oc

nds

high ionization atom encounters an atom with low	
electron. transfer occurs	
X	
6	
10,03	

	Score (p
low ionization atom encounters an atom with high electron, transfer occurs	1338
low ionization atom encounters an atom with high electron, transfer occurs	959
high ionization atom encounters an atom with low electron, transfer occurs	0
	0
neutral ionization atom encounters an atom with low electron,transfer occur	0
	0
low ionization atom encounters an atom with high electron, transfer occurs	850
neutral ionization atom encounters an atom with low electron,transfer occur	0
low ionization atom encounters an atom with high electron, transfer occurs	1308
low ionization atom encounters an atom with high electron, transfer occurs	1264

low ionization atom encounters an atom with high	1442
electron, transfer occurs	
high ionization atom encounters an atom with low	0
electron, transfer occurs	
	0
low ionization atom encounters an atom with high	1339
electron, transfer occurs	1000
neutral ionization atom encounters an atom with low	0
electron,transfer occur	
low ionization atom encounters an atom with high	1163
electron, transfer occurs	1100
high ionization atom encounters an atom with low	0
electron, transfer occurs	
low ionization atom encounters an atom with high	1089
electron, transfer occurs	1000
neutral ionization atom encounters an atom with low	0
electron,transfer occur	
high ionization atom encounters an atom with low	0
electron, transfer occurs	<u> </u>
high ionization atom encounters an atom with low	0
electron, transfer occurs	<u> </u>
low ionization atom encounters an atom with high	1449
electron, transfer occurs	1440
low ionization atom encounters an atom with high	1207
electron, transfer occurs	1207
low ionization atom encounters an atom with high	860
electron, transfer occurs	000
high ionization atom encounters an atom with low	0
electron, transfer occurs	

curs			

low ionization atom encounters an atom with high	
electron. transfer occurs	
√□	
12	
12,32	

oints)	Current
	9653
	6917
	6911
	0
	5334
	1775
	5113
	5205
	9406
	9730

9416
8792
6899
9695
3840
6449
5956
7078
7460
6275
8142
9989
8263
5409
8321

neutral ionization atom encounters an atom with low	
electron.transfer occur	
X	
4	
8,30	

Total Score (points)	Answer ti
	7,5
	16,9
	8,4
	60
	4,4
	60
	18
	12,5
	11
	4,3

7
11,3
60
7,3
8,9
16,4
8,1
25,3
7,4
8,9
11,6
6,1
11,2
16,8
11,9

neutral ionization atom encounters an atom with
high electron.transfer occu X
C
0,00
me (seconds)

block 5 ic

11 Quiz

Correct answers

Players correct (

Question duratic

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Alec S

Ashley

Bo Kites Truck

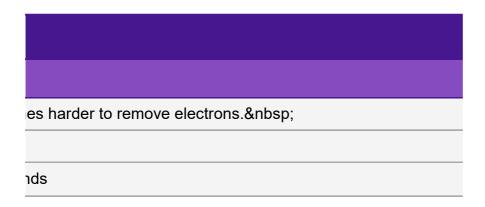
Camden

Chelsea

Dahlia

Gina

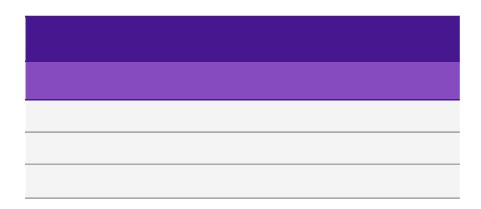
Katie


Liam

Lindsey

Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

nization energy, maddie, maco	n, jason, owen
how does any trend effect ionization	
;	It becom
(%)	72,00%
on	20 secon
nmary	
	<u> </u>
pt?	
ers received	
ken to answer (seconds)	
ails	Answer
	Allswei ✓
	X
	√ □
	X
	√ □
	X
	√ □
	√ □
	√ □
	√ 1


√ □
Х
√ Ω
√ □
√ □
Х
√ □
√ □
√ □
√ Ω
Х
√ □
√ □
√ Ω
Х

it adds new protons to the elements	•
X	
1	
8,20	

	Score (p
It becomes harder to remove electrons.	1228
It becomes easier to remove electrons.	0
It becomes harder to remove electrons.	810
	0
It becomes harder to remove electrons.	835
	0
It becomes harder to remove electrons.	795
It becomes harder to remove electrons.	788
It becomes harder to remove electrons.	1170
It becomes harder to remove electrons.	1128

It becomes harder to remove electrons.	1243
it adds new protons to the elements	0
It becomes harder to remove electrons.	705
It becomes harder to remove electrons.	1160
It becomes harder to remove electrons.	805
It becomes easier to remove electrons.	0
It becomes harder to remove electrons.	738
It becomes harder to remove electrons.	1165
It becomes harder to remove electrons.	743
It becomes harder to remove electrons.	915
It becomes easier to remove electrons.	0
It becomes harder to remove electrons.	1268
It becomes harder to remove electrons.	1035
It becomes harder to remove electrons.	863
It becomes easier to remove electrons.	0

It becomes easier to remove electrons.	•
X	
4	
10,93	

oints)	Current
	10881
	6917
	7721
	0
	6169
	1775
	5908
	5993
	10576
	10858

10659
8792
7604
10855
4645
6449
6694
8243
8203
7190
8142
11257
9298
6272
8321

It becomes harder to remove electrons.	
√ □	
18	
10,02	

Total Score (points)	Answer ti
	10,9
	8,8
	7,6
	20
	6,6
	20
	12,2
	8,5
	13,2
	10,9

10,3
8,2
11,8
13,6
7,8
9,5
10,5
9,4
10,3
3,4
16
9,3
14,6
9,5
9,4

It becomes a new element	
X	
	0
0,0	UU —
0,0	00
	00
ime (seconds)	

Question Number	
1	Quiz

1	Quiz
1	Quiz
2	Quiz

2 Quiz
2 Quiz

2	Quiz
2	Quiz
2	Quiz
3	Quiz

3	Quiz
3	Quiz
4	Quiz

4 Quiz
4 Quiz

4	Quiz
4	Quiz
5	Quiz

5 Quiz
5 Quiz
6 Quiz
6 Quiz

6	Quiz
6	Quiz

6	Quiz
6	Quiz
7	Quiz

7	Quiz
7	Quiz

8	3 Quiz
8	3 Quiz

8	3 Qu	iz
8	3 Qu	iz
8	3 Qu	İΖ
8	3 Qu	iz
8	3 Qu	İΖ
8	3 Qu	iz
g	9 Qu	iz
g	9 Qu	iz
g	9 Qu	iz
g	9 Qu	iz
g) Qu	iz
g) Qu	iz
S) Qu	iz

9	Quiz
9	Quiz

9	Quiz
9	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz

10 Quiz
10 Quiz
11 Quiz
11 Quiz
11 Quiz
11 Quiz
11 Quiz

,	11	Quiz
,	11	Quiz
•	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
•	11	Quiz

11	Quiz
11	Quiz
11	Quiz
11	Quiz

Question
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?

What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
What is the definition/ main purpose of the Ionization energy trend?
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules

true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
true/false when measuring lonization energy we is measured per mole of atoms or molecules and expressed in kiloJoules
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from
Ionization energy trends move from

Ionization energy trends move from
Ionization energy trends move from
Noble gases, having very LOW ionization energy, increases in energy as you go up the group
Noble gases, having very LOW ionization energy, increases in energy as you go up the group
Noble gases, having very LOW ionization energy, increases in energy as you go up the group
Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Noble gases, having very LOW ionization energy, increases in energy as you go up the group

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

Large/small values for ionization energy trends (there will be two correct answers one for largest and one for smallest

How the trend is different from metals

How the trend is different from metals

How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals
How the trend is different from metals

| How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from non-metals |
|--|--|
| How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from metals How the trend is different from metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from non-metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from non-metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from non-metals |
| How the trend is different from non-metals How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from non-metals |
| How the trend is different from non-metals How the trend is different from non-metals | How the trend is different from non-metals |
| How the trend is different from non-metals | How the trend is different from non-metals |
| | How the trend is different from non-metals |
| How the trend is different from non-metals | How the trend is different from non-metals |
| | How the trend is different from non-metals |

How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals
How the trend is different from non-metals

How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does covalent bonding affects bonds

How does covalent bonding affects bonds
How does covalent bonding affects bonds
How does bonds polarity affects ionization
How does bonds polarity affects ionization
How does bonds polarity affects ionization
How does bonds polarity affects ionization
How does bonds polarity affects ionization
How does bonds polarity affects ionization
How does bonds polarity affects ionization

How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization How does bonds polarity affects ionization	How does bonds polarity affects ionization
How does bonds polarity affects ionization	How does bonds polarity affects ionization
	How does bonds polarity affects ionization
How does bonds polarity affects ionization	How does bonds polarity affects ionization
	How does bonds polarity affects ionization

How does bonds polarity affects ionization How does bonds polarity affects ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does bonds polarity affects ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does bonds polarity affects ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization How does ionic bonding affect ionization	How does ionic bonding affect ionization
How does ionic bonding affect ionization	How does ionic bonding affect ionization
	How does ionic bonding affect ionization
How does ionic bonding affect ionization	How does ionic bonding affect ionization
	How does ionic bonding affect ionization

How does ionic bonding affect ionization
How does ionic bonding affect ionization
how does any trend effect ionization
how does any trend effect ionization
how does any trend effect ionization
how does any trend effect ionization
how does any trend effect ionization

how does any trend effect ionization
how does any trend effect ionization

how does any trend effect ionization
how does any trend effect ionization
how does any trend effect ionization
how does any trend effect ionization

Answer 1	Answer 2
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase

the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
the energy required to REMOVE an electron from an atom in gas phase	the energy required to ADD an electron to an atom in the gas phase
False	True
False	True
False	True
False	True
False	True
False	True

False	True
False	True

False	True
False	True
False	True
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left

down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
down to up	right to left
False	True
False	True
False	True
False	True

False	True
False	True

False	True
False	True
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.

The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
The smallest group value for this trend is noble gasses	The largest group value for this trend is noble gases.
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them

they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them

they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
they are happy to gain to become stronger	they don't want to lose so it takes more energy to hold onto all them
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons

gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons
gain more electrons to become a better element	they want to gain so they can lose more electrons

2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons

2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
2 atoms of elements with similar electronegativity tend to form covalent	gains protons and looses electrons
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements

the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements

the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
the differences of electronegativity can change the neutrons and elements	the differences of electronegativity can change the protons and elements
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs

high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
high ionization atom encounters an atom with low electron, transfer occurs	low ionization atom encounters an atom with high electron, transfer occurs
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.

it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.

it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.
it adds new protons to the elements	It becomes easier to remove electrons.

Answer 3	Answer 4
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small

involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small
involves size of the nucleus it required it to be smaller rather then big	involves size of the nucleus it required it to be bigger rather then small

up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right

up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right
up to down	left to right

The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.
The largest group value for this trend is alkali metals.	The smallest group value for this trend is alkali metals.

The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.
The smallest group value for this trend is alkali metals.

they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	

they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they are happy to lose electron because it satisfies the octet rule	
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons

they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons
they want to lose so they can gain more protons	don't want to lose, it takes more energy to hold onto all the electrons

lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent

lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
lose electrons and gains protons	4 atoms of elements with similar electronegativity trend to from covalent
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference

Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference

Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
Intermediate differences in electronegativity between covalent and polarity	the gaining of the electronegativity changes the intermediate difference
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu

neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
neutral ionization atom encounters an atom with low electron,transfer occur	neutral ionization atom encounters an atom with high electron,transfer occu
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element

It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element

It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element
It becomes harder to remove electrons.	It becomes a new element

Correct Answers	Time Allotted to Answer (seconds)
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60

the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
the energy required to REMOVE an electron from an atom in gas phase	60
True	60
True	60
True	60
True	60
True	60
True	60

True	60
True	60

True	60
True	60
True	60
left to right	20

left to right 20 False 60 False 60		
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 left to right 20 left to right 20 False 60 False 60 False 60	left to right	20
left to right 20 left to right 20 left to right 20 False 60 False 60 False 60	left to right	20
left to right 20 left to right 20 False 60 False 60 False 60	left to right	20
left to right 20 False 60 False 60 False 60	left to right	20
False 60 False 60 False 60	left to right	20
False 60	left to right	20
False 60	False	60
	False	60
False 60	False	60
	False	60

False	60
False	60

False 60 False 60 False 60 False 60 False 60 False 60 The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group		
False 60 False 60 False 60 The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is alkali metals. The largest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble ga	False	60
False 60 False 60 The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. ,	False	60
False 60 The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The small	False	60
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group va	False	60
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals.	False	60
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals.	The largest group value for this trend is noble	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.		20
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.		20
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.	The largest group value for this trend is noble	
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.	gases. , The smallest group value for this	20
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.	trend is alkali metals.	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.		
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases.		20
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this	trend is alkali metals. The largest group value for this trend is noble.	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this		20
The largest group value for this trend is noble gases. , The smallest group value for this 20 trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this 20 trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble		20
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this The largest group value for this trend is noble gases. , The smallest group value for this	The largest group value for this trend is noble	
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble	gases. , The smallest group value for this	20
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this	trend is alkali metals.	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this		
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this	, , , , , , , , , , , , , , , , , , , ,	20
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this	trend is alkali metals.	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this		20
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this		20
gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is noble gases. , The smallest group value for this	The largest group value for this trend is noble	
The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this 20		20
gases., The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases., The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases., The smallest group value for this 20	trend is alkali metals. The largest group value for this trend is noble	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this		20
The largest group value for this trend is noble gases. , The smallest group value for this 20 trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this 20	trend is alkali metals.	
trend is alkali metals. The largest group value for this trend is noble gases. , The smallest group value for this	The largest group value for this trend is noble	
The largest group value for this trend is noble gases. , The smallest group value for this	9 .	20
gases. , The smallest group value for this	trend is alkali metals. The largest group value for this trend is noble	
5 , 5 1		20

The largest group value for this trand is noble	
The largest group value for this trend is noble	20
gases. , The smallest group value for this	20
trend is alkali metals. The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	20
gases. , The smallest group value for this	20
trend is alkali metals. The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	_
The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	20
gases. , The smallest group value for this	20
trend is alkali metals. The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	00
gases. , The smallest group value for this	20
trend is alkali metals. The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals	20
The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	
The largest group value for this trend is noble	00
gases. , The smallest group value for this	20
trend is alkali metals. The largest group value for this trend is noble	
gases. , The smallest group value for this	20
trend is alkali metals.	20
they are happy to lose electron because it satisfies the octet rule	60
Decause it satisfies the Octet fule	
they are happy to lose electron	
because it satisfies the octet rule	60

they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60

they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
they are happy to lose electron because it satisfies the octet rule	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60

b.	
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60
don't want to lose, it takes more energy to hold onto all the electrons	60

2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60

-	
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
2 atoms of elements with similar electronegativity tend to form covalent	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60

Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60
Intermediate differences in electronegativity between covalent and polarity	60

low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
low ionization atom encounters an atom with high electron, transfer occurs	60
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20

It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20

It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20
It becomes harder to remove electrons.	20

Players
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys

Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia

Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie

mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael

Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden

Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason

julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon

Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley

Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover

david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam

Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney

Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D

Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina

Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna

ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea
Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen

Rhys
Sebastian :D
Shane
ben dover
david
jason
julia
maddie
mckenna
ok boomer
sydney
Alec S
Ashley
Bo Kites Truck
Camden
Chelsea

Dahlia
Gina
Katie
Liam
Lindsey
Macon
Max
Michael
Owen
Rhys
Sebastian :D
Shane
ben dover
david
jason
julia

maddie
mckenna
ok boomer
sydney

Answer	Correct / Incorrect	Correct
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
	Incorrect	0
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
	Incorrect	0
involves size of the nucleus it required it to be smaller rather then big	Incorrect	0
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1
the energy required to REMOVE an electron from an atom in gas phase	Correct	1

Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
	Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

False	Incorrect	0
True	Correct	1
False	Incorrect	0
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1

True	Correct	1
False	Incorrect	0
True	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
	Incorrect	0
left to right	Correct	1
	Incorrect	0
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
up to down	Incorrect	0
left to right	Correct	1

left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
down to up	Incorrect	0
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
left to right	Correct	1
False	Correct	1
True	Incorrect	0
True	Incorrect	0
	Incorrect	0

False	Correct	1
False	Correct	1
True	Incorrect	0
False	Correct	1
True	Incorrect	0
False	Correct	1
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0

	1	
False	Correct	1
True	Incorrect	0
False	Correct	1
False	Correct	1
False	Correct	1
	Incorrect	0
The largest group value for this trend is noble gases.	Correct	1
The largest group value for this trend is noble gases.	Correct	1
	Incorrect	0
	Incorrect	0
	Incorrect	0
The largest group value for this trend is noble gases.	Correct	1
	Incorrect	0
	Incorrect	0
The largest group value for this trend is noble gases.	Correct	1
The smallest group value for this trend is alkali metals.	Correct	1

Correct	1
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Correct	1
Correct	1
	Correct Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect Correct Incorrect Correct Correct Correct Correct Incorrect Incorrect Correct Incorrect Incorrect

they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
	Incorrect	0
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they are happy to lose electron because it satisfies the octet rule	Correct	1
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they are happy to lose electron because it satisfies the octet rule	Correct	1
they are happy to gain to become stronger	Incorrect	0
they are happy to lose electron because it satisfies the octet rule	Correct	1
they are happy to lose electron because it satisfies the octet rule	Correct	1
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they are happy to lose electron because it satisfies the octet rule	Correct	1
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
they don't want to lose so it takes more energy to hold onto all them	Incorrect	0
	Incorrect	0

they are happy to lose electron because it satisfies the octet rule	Correct	1
they are happy to lose electron because it satisfies the octet rule	Correct	1
they are happy to gain to become stronger	Incorrect	0
they are happy to lose electron because it satisfies the octet rule	Correct	1
they are happy to gain to become stronger	Incorrect	0
they are happy to gain to become stronger	Incorrect	0
they are happy to gain to become stronger	Incorrect	0
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
they want to gain so they can lose more electrons	Incorrect	0
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
	Incorrect	0
they want to lose so they can gain more protons	Incorrect	0
	Incorrect	0
they want to gain so they can lose more electrons	Incorrect	0
they want to gain so they can lose more electrons	Incorrect	0
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1

don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
they want to lose so they can gain more protons	Incorrect	0
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1
don't want to lose, it takes more energy to hold onto all the electrons	Correct	1

2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
	Incorrect	0
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
	Incorrect	0
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
	Incorrect	0
4 atoms of elements with similar electronegativity trend to from covalent	Incorrect	0
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1

j.		
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
2 atoms of elements with similar electronegativity tend to form covalent	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
	Incorrect	0
the differences of electronegativity can change the protons and elements	Incorrect	0
the differences of electronegativity can change the neutrons and elements	Incorrect	0
the gaining of the electronegativity changes the intermediate difference	Incorrect	0

the differences of electronegativity can change the protons and elements	Incorrect	0
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
the differences of electronegativity can change the protons and elements	Incorrect	0
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1
Intermediate differences in electronegativity between covalent and polarity	Correct	1

the differences of electronegativity can change the neutrons and elements	Incorrect	0
Intermediate differences in electronegativity between covalent and polarity	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
	Incorrect	0
neutral ionization atom encounters an atom with low electron,transfer occur	Incorrect	0
	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
neutral ionization atom encounters an atom with low electron,transfer occur	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1

ja .		
neutral ionization atom encounters an atom with low electron,transfer occur	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
neutral ionization atom encounters an atom with low electron,transfer occur	Incorrect	0
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
low ionization atom encounters an atom with high electron, transfer occurs	Correct	1
high ionization atom encounters an atom with low electron, transfer occurs	Incorrect	0
It becomes harder to remove electrons.	Correct	1
It becomes easier to remove electrons.	Incorrect	0
It becomes harder to remove electrons.	Correct	1
	Incorrect	0
It becomes harder to remove electrons.	Correct	1

	Incorrect	0
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
it adds new protons to the elements	Incorrect	0
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes easier to remove electrons.	Incorrect	0
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes easier to remove electrons.	Incorrect	0

It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes harder to remove electrons.	Correct	1
It becomes easier to remove electrons.	Incorrect	0

Incorrect	Score (points)	Score without Answer Streak Bonus (points)
0	943	943
0	955	955
0	933	933
1	0	0
0	969	969
1	0	0
1	0	0
0	889	889
0	894	894
0	973	973
0	966	966
0	934	934
0	960	960
0	953	953
0	876	876

0	944	944
0	934	934
0	955	955
0	946	946
0	983	983
0	916	916
0	954	954
0	923	923
0	933	933
0	937	937
0	1061	961
0	1091	991
0	1068	968
1	0	0
0	1084	984
0	892	892

1	0	0
0	1078	978
0	1068	968
0	1047	947
0	1078	978
0	1086	986
0	1069	969
0	1086	986
0	1076	976
1	0	0
0	1061	961
0	1093	993
0	1079	979
0	1089	989
0	1064	964
0	1085	985

0	1028	928
1	0	0
0	1073	973
0	900	700
0	1153	953
0	1128	928
1	0	0
0	1083	883
1	0	0
0	893	893
0	1058	858
0	820	620
0	1085	885
0	745	545
1	0	0
0	1055	855

0	943	743
0	1035	835
0	888	888
0	1090	890
0	1153	953
0	1090	890
1	0	0
0	1085	885
0	1128	928
0	925	725
0	805	805
0	1138	938
0	1247	947
1	0	0
1	0	0
1	0	0

0	1290	990
0	883	883
0	1058	958
0	1281	981
0	1196	896
0	1279	979
1	0	0
0	979	979
1	0	0
0	1203	903
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0

977	1277	0
0	0	1
959	1259	0
988	1088	0
988	1288	0
0	0	1
875	875	0
830	830	0
0	0	1
0	0	1
0	0	1
858	1058	0
0	0	1
0	0	1
623	1023	0
563	563	0

660	760	0
735	735	0
0	0	1
0	0	1
568	568	0
0	0	1
0	0	1
0	0	1
0	0	1
635	1035	0
580	580	0
0	0	1
0	0	1
670	1070	0
881	881	0
939	1039	0

0	0	1
0	0	1
0	0	1
0	0	1
954	1254	0
0	0	1
884	884	0
0	0	1
917	1017	0
923	1123	0
0	0	1
896	896	0
0	0	1
0	0	1
0	0	1
0	0	1

916	916	0
939	939	0
0	0	1
926	1026	0
0	0	1
0	0	1
0	0	1
927	1027	0
0	0	1
973	973	0
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
868	968	0

0	949	949
0	1105	905
0	1250	950
0	958	958
0	1008	908
1	0	0
0	836	836
0	968	968
0	782	782
0	1043	943
0	1004	904
0	844	844
0	1160	960
0	848	848
0	798	798
0	860	860

0	1060	860
1	0	0
0	1078	978
1	0	0
0	908	908
1	0	0
1	0	0
0	899	899
0	1080	880
0	1047	947
0	1197	897
0	1347	947
0	1068	968
0	1041	841
0	853	853
0	1013	913

0	1001	901
0	1055	955
0	1118	918
0	1037	837
0	1033	933
0	1230	930
0	1026	926
0	925	825
0	1062	962
0	1196	896
0	845	845
0	901	701
1	0	0
1	0	0
1	0	0
1	0	0

1	0	0
0	1188	888
0	1063	863
0	1303	903
0	1313	813
0	1054	854
0	1226	926
1	0	0
0	1037	837
0	902	702
0	951	751
0	1268	968
0	1223	923
0	888	688
0	1377	977
0	1047	847

0	0	1
693	893	0
938	1338	0
859	959	0
0	0	1
0	0	1
0	0	1
0	0	1
850	850	0
0	0	1
908	1308	0
964	1264	0
942	1442	0
0	0	1
0	0	1
939	1339	0

0	0	1
863	1163	0
0	0	1
789	1089	0
0	0	1
0	0	1
0	0	1
949	1449	0
907	1207	0
860	860	0
0	0	1
728	1228	0
0	0	1
810	810	0
0	0	1
835	835	0

1	0	0
0	795	695
0	788	788
0	1170	670
0	1128	728
0	1243	743
1	0	0
0	705	705
0	1160	660
0	805	805
1	0	0
0	738	738
0	1165	765
0	743	743
0	915	915
1	0	0

0	1268	768
0	1035	635
0	863	763
1	0	0

Current Total Score (points)	Answer Time (%)
943	11.33%
955	9.00%
933	13.50%
0	100.00%
969	6.17%
0	100.00%
0	21.67%
889	22.17%
894	21.17%
973	5.50%
966	6.83%
934	13.17%
960	8.00%
953	9.33%
876	24.83%

944	11.17%
934	13.17%
955	9.00%
946	10.83%
983	3.50%
916	16.83%
954	9.17%
923	15.50%
933	13.33%
937	12.67%
2004	7.83%
2046	1.83%
2001	6.33%
0	100.00%
2053	3.17%
892	21.67%

0	2.67%
1967	4.50%
1962	6.50%
2020	10.67%
2044	4.50%
2020	2.83%
2029	6.17%
2039	2.83%
1952	4.83%
944	9.50%
1995	7.83%
2048	1.50%
2025	4.17%
2072	2.17%
1980	7.17%
2039	3.00%

1951	14.50%
933	7.00%
2010	5.33%
2904	60.00%
3199	9.50%
3129	14.50%
0	100.00%
3136	23.50%
892	100.00%
893	21.50%
3025	28.50%
2782	76.00%
3105	23.00%
2789	91.00%
2020	23.50%
3084	29.00%

U	
2982	51.50%
2987	33.00%
1832	22.50%
3085	22.00%
3201	9.50%
3115	22.00%
2072	10.00%
3065	23.00%
3167	14.50%
2876	55.00%
1738	39.00%
3148	12.50%
4151	10.67%
3199	2.50%
3129	9.33%
0	100.00%

4426	2.00%
1775	23.33%
1951	8.33%
4306	3.83%
3978	20.83%
4384	4.17%
2789	13.67%
2999	4.17%
3084	8.33%
4185	19.33%
2987	5.67%
1832	8.50%
3085	8.00%
3201	9.33%
3115	8.50%
2072	1.00%

4.67%
6.00%
8.17%
2.50%
2.33%
100.00%
25.00%
34.00%
100.00%
100.00%
100.00%
28.50%
100.00%
100.00%
75.50%
87.50%

· I	
3759	68.00%
3819	53.00%
4185	100.00%
2987	100.00%
2400	86.50%
3085	100.00%
3201	100.00%
3115	100.00%
2072	29.00%
5377	73.00%
3747	84.00%
4135	100.00%
2826	100.00%
5506	66.00%
5032	23.83%
5113	12.17%

3959	13.00%
0	100.00%
4426	7.17%
1775	16.33%
4263	9.17%
4306	12.33%
4862	23.17%
5407	12.00%
4369	16.67%
4882	15.33%
3819	17.33%
5081	20.83%
2987	19.00%
2400	7.00%
3085	15.67%
3201	100.00%

16.83%	4031
12.17%	3011
12.67%	5377
14.83%	4773
17.50%	4135
25.00%	2826
10.50%	5506
14.67%	6059
4.33%	5113
5.33%	4932
100.00%	0
20.33%	4426
100.00%	1775
31.83%	4263
7.00%	4306
26.33%	5830

6356 10.17% 5474 19.00% 6132 10.00% 4777 8.50% 6089 18.50% 2987 23.67% 3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50% 6366 28.00%		
6132 10.00% 4777 8.50% 6089 18.50% 2987 23.67% 3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	10.17%	6356
4777 8.50% 6089 18.50% 2987 23.67% 3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	19.00%	5474
6089 18.50% 2987 23.67% 3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	10.00%	6132
2987 23.67% 3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	8.50%	4777
3236 32.83% 4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	18.50%	6089
4053 6.50% 3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	23.67%	2987
3983 43.67% 5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	32.83%	3236
5074 11.33% 4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	6.50%	4053
4015 19.17% 6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	43.67%	3983
6221 31.17% 5933 8.00% 4983 30.33% 3624 40.50%	11.33%	5074
5933 8.00% 4983 30.33% 3624 40.50%	19.17%	4015
4983 30.33% 3624 40.50%	31.17%	6221
3624 40.50%	8.00%	5933
	30.33%	4983
6366 28.00%	40.50%	3624
	28.00%	6366

7119 28.00% 5113 100.00% 6010 4.50% 0 100.00% 5334 18.50% 1775 100.00% 4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50% 4249 17.33%		
6010 4.50% 0 100.00% 5334 18.50% 1775 100.00% 4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	28.00%	7119
0 100.00% 5334 18.50% 1775 100.00% 4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	100.00%	5113
5334 18.50% 1775 100.00% 4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	4.50%	6010
1775 100.00% 4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	100.00%	0
4263 26.83% 5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	18.50%	5334
5205 20.17% 6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	100.00%	1775
6910 24.00% 7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	26.83%	4263
7403 10.67% 6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	20.17%	5205
6671 20.67% 7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	24.00%	6910
7479 10.67% 5845 6.33% 7130 31.83% 3840 29.50%	10.67%	7403
5845 6.33% 7130 31.83% 3840 29.50%	20.67%	6671
7130 31.83% 3840 29.50%	10.67%	7479
3840 29.50%	6.33%	5845
	31.83%	7130
4249 17.33%	29.50%	3840
	17.33%	4249

19.83%
9.00%
16.33%
32.67%
13.33%
14.00%
14.83%
35.00%
7.67%
20.83%
31.00%
59.83%
100.00%
4.33%
11.00%
38.00%

5205	6.67%
8098	22.50%
8466	27.50%
7974	19.50%
8792	37.50%
6899	29.17%
8356	14.83%
3840	7.33%
5286	32.67%
5956	59.67%
5989	49.83%
7460	6.50%
6275	15.33%
8142	62.33%
8540	4.67%
7056	30.67%

4549	42.83%
8321	61.33%
9653	12.50%
6917	28.17%
6911	14.00%
0	100.00%
5334	7.33%
1775	100.00%
5113	30.00%
5205	20.83%
9406	18.33%
9730	7.17%
9416	11.67%
8792	18.83%
6899	100.00%
9695	12.17%

3840	14.83%
6449	27.33%
5956	13.50%
7078	42.17%
7460	12.33%
6275	14.83%
8142	19.33%
9989	10.17%
8263	18.67%
5409	28.00%
8321	19.83%
10881	54.50%
6917	44.00%
7721	38.00%
0	100.00%
6169	33.00%

1775	100.00%
5908	61.00%
5993	42.50%
10576	66.00%
10858	54.50%
10659	51.50%
8792	41.00%
7604	59.00%
10855	68.00%
4645	39.00%
6449	47.50%
6694	52.50%
8243	47.00%
8203	51.50%
7190	17.00%
8142	80.00%

11257	46.50%
9298	73.00%
6272	47.50%
8321	47.00%

Answer Time (seconds)	
	6,8
	5,4
	8,1
	60
	3,7
	60
	13
	13,3
	12,7
	3,3
	4,1
	7,9
	4,8
	5,6
	14,9

6,7
7,9
5,4
6,5
2,1
10,1
5,5
9,3
8
7,6
4,7
1,1
3,8
60
1,9
13

1,6
2,7
3,9
6,4
2,7
1,7
3,7
1,7
2,9
5,7
4,7
0,9
2,5
1,3
4,3
1,8

8,7 4,2 3,2 12 1,9 2,9 20 4,7 20 4,3 5,7 15,2 4,6 18,2 4,7	
3,2 12 1,9 2,9 20 4,7 20 4,3 5,7 15,2 4,6 18,2	8,7
12 1,9 2,9 20 4,7 20 4,3 5,7 15,2 4,6 18,2	4,2
1,9 2,9 20 4,7 20 4,3 5,7 15,2 4,6 18,2	3,2
2,9 20 4,7 20 4,3 5,7 15,2 4,6 18,2	12
20 4,7 20 4,3 5,7 15,2 4,6 18,2	1,9
4,7 20 4,3 5,7 15,2 4,6 18,2	2,9
20 4,3 5,7 15,2 4,6 18,2	20
4,3 5,7 15,2 4,6 18,2	4,7
5,7 15,2 4,6 18,2	20
15,2 4,6 18,2 4,7	4,3
4,6 18,2 4,7	5,7
4,7	15,2
4,7	4,6
	18,2
5,8	4,7
	5,8

10,3
6,6
4,5
4,4
1,9
4,4
2
4,6
2,9
11
7,8
2,5
6,4
1,5
5,6
60

1,2
14
5
2,3
12,5
2,5
8,2
2,5
5
11,6
11,6
3,4
11,6 3,4 5,1
11,6 3,4 5,1 4,8
11,6 3,4 5,1 4,8 5,6

2,8
3,6
4,9
1,5
1,4
20
5
6,8
20
20
20
5,7
20
20
15,1
17,5

13,6 10,6 20 20 17,3 20 20 20 5,8 14,6 16,8 20 20 13,2 14,3 7,3	
20 17,3 20 20 20 20 5,8 14,6 16,8 20 20 13,2	13,6
20 17,3 20 20 20 5,8 14,6 16,8 20 20 13,2	10,6
17,3 20 20 20 5,8 14,6 16,8 20 20 13,2	20
20 20 5,8 14,6 16,8 20 20 13,2	20
20 20 5,8 14,6 16,8 20 20 13,2	17,3
20 5,8 14,6 16,8 20 20 13,2	20
5,8 14,6 16,8 20 20 13,2	20
14,6 16,8 20 20 13,2	20
16,8 20 20 13,2 14,3	5,8
20 20 13,2 14,3	14,6
13,2 14,3	16,8
13,2	20
14,3	20
	13,2
7,3	14,3
	7,3

7,8 60 4,3 9,8 5,5 7,4 13,9 7,2 10 9,2 10,4 12,5 11,4 4,2 9,4	
4,3 9,8 5,5 7,4 13,9 7,2 10 9,2 10,4 12,5 11,4 4,2 9,4	7,8
9,8 5,5 7,4 13,9 7,2 10 9,2 10,4 12,5 11,4 4,2	60
5,5 7,4 13,9 7,2 10 9,2 10,4 12,5 11,4 4,2 9,4	4,3
7,4 13,9 7,2 10 9,2 10,4 12,5 11,4 4,2 9,4	9,8
13,9 7,2 10 9,2 10,4 12,5 11,4 4,2	5,5
7,2 10 9,2 10,4 12,5 11,4 4,2	7,4
10 9,2 10,4 12,5 11,4 4,2 9,4	13,9
9,2 10,4 12,5 11,4 4,2	7,2
10,4 12,5 11,4 4,2 9,4	10
12,5 11,4 4,2 9,4	9,2
11,4 4,2 9,4	10,4
9,4	12,5
9,4	11,4
	4,2
60	9,4
	60

10,1
7,3
7,6
8,9
10,5
15
6,3
8,8
2,6
3,2
60
12,2
60
19,1
4,2
15,8

6,1
11,4
6
5,1
11,1
14,2
19,7
3,9
26,2
6,8
11,5
18,7
4,8
18,2
24,3
16,8

16,8
60
2,7
60
11,1
60
16,1
12,1
14,4
6,4
12,4
6,4
3,8
19,1
17,7
10,4

11,9
5,4
9,8
19,6
8
8,4
8,9
21
4,6
12,5
18,6
35,9
60
2,6
6,6
22,8

4
13,5
16,5
11,7
22,5
17,5
8,9
4,4
19,6
35,8
29,9
3,9
9,2
37,4
2,8
18,4

25	5,7
36	5,8
7	',5
16	,9
8	3,4
	60
4	,4
	60
	18
12	2,5
	11
4	,3
	7
11	,3
	60
7	',3

8,9
16,4
8,1
25,3
7,4
8,9
11,6
6,1
11,2
16,8
11,9
10,9
8,8
7,6
20
6,6

20
12,2
8,5
13,2
10,9
10,3
8,2
11,8
13,6
7,8
9,5
10,5
9,4
10,3
3,4
16

9,3
14,6
9,5
9,4