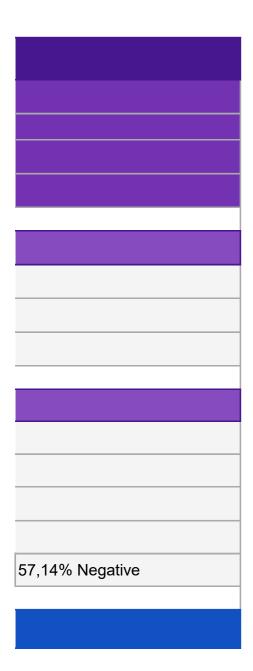
Block 4 - Chemical Properties Trend		
Played on	13 Nov 2019	
Hosted by	JenKrug	
Played with	29 players	
Played	11 of 11	

Overall Performance	
Total correct answers (%)	80,569
Total incorrect answers (%)	19,449
Average score (points)	10046


Feedback	
Number of responses	7
How fun was it? (out of 5)	3,75 o
Did you learn something?	75,009
Do you recommend it?	75,009
How do you feel?	•

Switch tabs/pages to view other result breakdown

Overview

%			
%			
,31 points			
ut of 5			
% Yes	25,00% No		
% Yes	25,00% No		
42,86% Positive	•	0,00% Neutral	•

Overview

Block 4 - Chemical Properties Trend

Final Sco	res
Rank	Players
1	Melina
2	neha
3	GABEY
4	liesel
5	millie
6	Sarah
7	Quinn
8	logan
9	Andrew
10	Shaimir
11	grace
12	Lee
13	Felicity
14	Moon
15	Brooke
16	beatrice
17	jennings
18	CjCrUmP
19	mason
20	Ауа
21	campbell
22	lan

Final Scores

23	grant
24	Karanvir Singh
25	Abdullah
26	Clay
27	jen
28	lorin
29	Dahlia

Final Scores

Total Score (points)	Correct Answers	Incorrect Answers
14440	11	0
14181	11	0
14110	11	0
13861	11	0
13816	11	0
12033	10	1
11874	10	1
11743	10	1
11528	10	1
11455	10	1
11228	10	1
11141	10	1
11101	10	1
11084	10	1
10938	10	1
10865	10	1
10637	9	2
10552	10	1
9938	9	2
9508	9	2
9294	9	2
9084	9	2

Final Scores

8770	9	2
8392	8	3
8366	8	3
7821	8	3
1857	2	9
911	1	10
815	1	10

Block 4 - Chemical Properties Trend

Kahoot! Sur	nmary
Rank	Players
1	Melina
2	neha
3	GABEY
4	liesel
5	millie
6	Sarah
7	Quinn
8	logan
9	Andrew
10	Shaimir
11	grace
12	Lee
13	Felicity
14	Moon
15	Brooke

16	beatrice
17	jennings
18	CjCrUmP
19	mason
20	Aya
21	campbell
22	lan
23	grant
24	Karanvir Singh
25	Abdullah
26	Clay
27	jen
28	lorin
29	Dahlia

	Tanoot. Summary	
Total Score (points)	Q1	
14440	961	
14181	940	
14110	894	
13861	959	
13816	953	
12033	944	
11874	942	
11743	948	
11528	0	
11455	873	
11228	864	
11141	904	
11101	950	
11084	928	
10938	853	

10865	883
10637	882
10552	902
9938	0
9508	0
9294	0
9084	803
8770	769
8392	971
8366	964
7821	0
1857	0
911	911
815	815

Define "chemical property"	Q2
properties that becomes evident during or after a chemical reaction	757
properties that becomes evident during or after a chemical reaction	798
properties that becomes evident during or after a chemical reaction	732
properties that becomes evident during or after a chemical reaction	958
properties that becomes evident during or after a chemical reaction	1042
properties that becomes evident during or after a chemical reaction	1048
properties that becomes evident during or after a chemical reaction	988
properties that becomes evident during or after a chemical reaction	1032
change in which the form of matter is altered	942
properties that becomes evident during or after a chemical reaction	1028
properties that becomes evident during or after a chemical reaction	972
properties that becomes evident during or after a chemical reaction	1045
properties that becomes evident during or after a chemical reaction	1062
properties that becomes evident during or after a chemical reaction	1015
properties that becomes evident during or after a chemical reaction	813

unn	properties that becomes evident during or after a chemical reaction
unh	properties that becomes evident during or after a chemical reaction
UXII	properties that becomes evident during or after a chemical reaction
K/5	change in which the form of matter is altered
847	rearrangement of the physical structure of a substance
/ h /	rearrangement of the physical structure of a substance
unx	properties that becomes evident during or after a chemical reaction
11138	properties that becomes evident during or after a chemical reaction
111/5	properties that becomes evident during or after a chemical reaction
11143	properties that becomes evident during or after a chemical reaction
90.3	change in which the form of matter is altered
0	
	properties that becomes evident during or after a chemical reaction
	properties that becomes evident during or after a chemical reaction

How can you observe a chemical reaction?	Q3
color change	1147
color change	1132
color change	1128
color change	1145
color change	1085
color change	1120
color change	1100
color change	1133
color change	847
color change	1033
color change	1048
color change	1138
color change	1142
color change	1073
color change	1082

color change	1003
color change	1118
color change	1062
color change	973
color change	825
color change	997
color change	1077
color change	1067
color change	1142
color change	1128
color change	938
	0
	0
	0

Which is NOT a chemical reaction?	Q4
shredding	1267
shredding	1240
shredding	1243
shredding	1023
shredding	1047
shredding	1162
shredding	1180
shredding	0
shredding	933
shredding	0
shredding	1012
shredding	1145
shredding	0
shredding	0
shredding	1152

shredding	988
shredding	1057
shredding	1072
shredding	0
shredding	0
shredding	915
shredding	0
	0
	0
	0

What happens to valence electrons during ionic bonding?	Q5
metals lose electrons to become positive	1385
metals lose electrons to become positive	1352
metals lose electrons to become positive	1353
metals lose electrons to become positive	1292
metals lose electrons to become positive	1293
metals lose electrons to become positive	1333
metals lose electrons to become positive	1355
valence electrons are shared between them	952
metals lose electrons to become positive	940
valence electrons are shared between them	960
metals lose electrons to become positive	1262
metals lose electrons to become positive	0
valence electrons are shared between them	945
valence electrons are shared between them	948
metals lose electrons to become positive	1267

metals lose electrons to become positive	1315
metals lose electrons to become positive	1342
metals lose electrons to become positive	1320
valence electrons are shared between them	808
valence electrons are shared between them	828
metals lose electrons to become positive	1043
valence electrons are shared between them	948
valence electrons are shared between them	932
valence electrons are shared between them	937
valence electrons are shared between them	923
valence electrons are shared between them	938
	0
	0
	0

What happens to valence electrons during covalent bonding?	Q6
valence electrons are shared between them	1488
valence electrons are shared between them	1455
valence electrons are shared between them	1445
valence electrons are shared between them	1420
valence electrons are shared between them	1428
valence electrons are shared between them	1477
valence electrons are shared between them	1447
valence electrons are shared between them	1077
valence electrons are shared between them	1295
valence electrons are shared between them	1082
valence electrons are shared between them	1412
metals lose electrons to become positive	907
valence electrons are shared between them	962
valence electrons are shared between them	1073
valence electrons are shared between them	1203

valence electrons are shared between them	1445
valence electrons are shared between them	1465
valence electrons are shared between them	0
valence electrons are shared between them	1080
valence electrons are shared between them	827
valence electrons are shared between them	1107
valence electrons are shared between them	1058
valence electrons are shared between them	993
valence electrons are shared between them	0
valence electrons are shared between them	1055
valence electrons are shared between them	0
	0
	0
	0

Alkali Metals are the most reactive group of metals	Q7
True	1488
True	1467
True	1417
True	1388
True	1350
True	1438
True	1445
True	1148
True	1210
True	1068
True	1360
True	997
True	932
True	950
True	1327

True	1242
True	1362
False	840
True	1120
True	1052
True	1343
True	1038
True	915
False	922
True	1085
False	805
	0
	0
	0

Which is NOT a chemical property of metals?	Q8
high melting point	1488
high melting point	1433
high melting point	1468
high melting point	1375
high melting point	1397
malleable	1452
high density	1447
high melting point	1197
malleable	1440
malleable	1253
high density	1355
high density	1138
high melting point	1098
high density	1250
high density	1425

high density	1372
high melting point	1473
high melting point	978
malleable	1202
good conductors of heat	1083
high density	1343
malleable	1245
malleable	1162
high melting point	1022
high melting point	1210
high density	990
	895
	0
	0

What's the most reactive metal element?		Q9
	Cesium	1487
	Cesium	1443
	Cesium	1473
	Cesium	1395
	Cesium	1363
	Cesium	0
	Cesium	0
	Cesium	1325
	Cesium	1303
	Cesium	1275
	Cesium	0
	Cesium	1097
	Cesium	1257
	Cesium	1037
	Cesium	0

Cesium	0
Cesium	0
Cesium	950
Cesium	1270
Cesium	1272
Cesium	0
Cesium	0
Cesium	0
Cesium	1090
Cesium	0
Cesium	963
Cesium	0
	0
	0

Non-metals transfer electrons to metals when they react with them	Q10
False	1487
False	1463
False	1480
False	1443
False	1468
True	977
True	922
False	1463
False	1175
False	1468
True	920
False	1328
False	1470
False	1477
True	953

True	742
True	973
False	1245
False	1177
False	1387
True	937
True	907
True	962
False	1283
True	958
False	1172
True	962
	0
	0

What is the most reactive non-metal element?	Q11
Fluorine	1485
Fluorine	1458
Fluorine	1477
Fluorine	1463
Fluorine	1390
Fluorine	1082
Fluorine	1048
Fluorine	1468
Fluorine	1443
Fluorine	1415
Fluorine	1023
Fluorine	1442
Fluorine	1283
Fluorine	1333
Fluorine	863

Fluorine	920
Fluorine	0
Fluorine	1203
Fluorine	1433
Fluorine	1387
Fluorine	857
Fluorine	1040
Fluorine	932
Fluorine	0
Fluorine	0
Fluorine	1112
Fluorine	0
	0
	0

What is the most reactive group of non-me	tals?
	Halogens

Halogens
Noble Gases
Halogens
Metalloids
Metalloids
Halogens

Block 4 -

1 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

Brooke

CjCrUmP

Clay

Dahlia

Felicity

GABEY

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

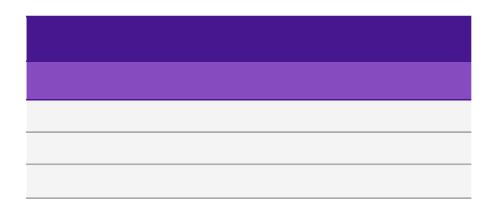
Chemical Properties Trend	
Define "chemical property"	
;	propertie
(%)	79,31%
on	60 secor
nmary	
	A
pt?	
rers received	
ken to answer (seconds)	
ails	Answer
	√0
	Х
	Х
	√ □
	√ □
	Х
	√ □
	√ 1
	√ □

√ □
√ □
Х
√ □
√ □
Х
√ □
√ □
√ □
√ □
Х
√ □
√ □

es that becomes evident during or after a chemical reaction

nds

rearrangement of the physical structure of a substance	*
X	
2	
9,85	


	Score (p
properties that becomes evident during or after a chemical reaction	964
change in which the form of matter is altered	0
rearrangement of the physical structure of a substance	0
properties that becomes evident during or after a chemical reaction	853
properties that becomes evident during or after a chemical reaction	902
change in which the form of matter is altered	0
properties that becomes evident during or after a chemical reaction	815
properties that becomes evident during or after a chemical reaction	950
properties that becomes evident during or after a chemical reaction	894
properties that becomes evident during or after a chemical reaction	803

properties that becomes evident during or after a	971
chemical reaction	
properties that becomes evident during or after a chemical reaction	904
properties that becomes evident during or after a	
chemical reaction	961
properties that becomes evident during or after a	000
chemical reaction	928
properties that becomes evident during or after a	942
chemical reaction	942
properties that becomes evident during or after a	944
chemical reaction	344
properties that becomes evident during or after a	873
chemical reaction	010
properties that becomes evident during or after a	883
chemical reaction	
rearrangement of the physical structure of a	0
substance	
properties that becomes evident during or after a	864
chemical reaction	
properties that becomes evident during or after a	769
chemical reaction	
	0
properties that becomes evident during or after a	000
chemical reaction	882
properties that becomes evident during or after a	050
chemical reaction	959
properties that becomes evident during or after a	948
chemical reaction	040
properties that becomes evident during or after a	911
chemical reaction	
change in which the form of matter is altered	0
properties that becomes evident during or after a	
chemical reaction	953
properties that becomes evident during or after a	
chemical reaction	940
onomical reaction	

properties that becomes evident during or after a	
chemical reaction	
√ □	
23	
11,42	

oints)	Current
	964
	0
	0
	853
	902
	0
	815
	950
	894
	803

971
904
961
928
942
944
873
883
0
864
769
0
882
959
948
911
0
953
940

change in which the form of matter is		
altered :		
X		
	3	
	25,57	

Total Score (points)	Answer ti
	4,3
	36,9
	8,3
	17,7
	11,8
	14,2
	22,2
	6
	12,7
	23,7

3,5
11,5
4,7
8,7
7
6,7
15,3
14
11,4
16,3
27,7
0
14,2
4,9
6,2
10,7
25,6
5,6
7,2

can be observed or measured without changing the
composition of matter
×
0
0.00
0,00
me (seconds)

Block 4 -

2 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

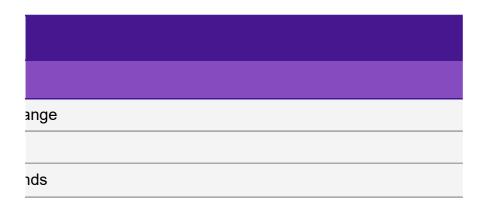
Brooke

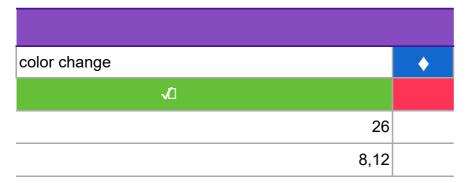
CjCrUmP

Clay

Dahlia

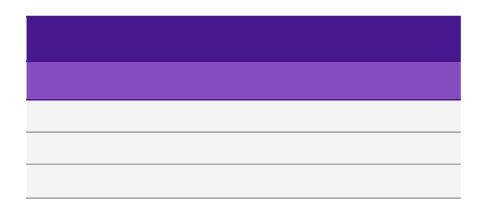
Felicity


GABEY

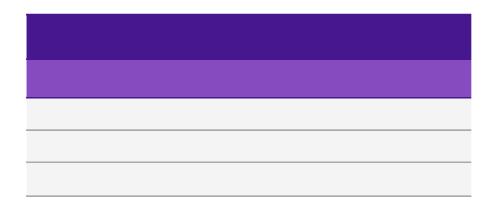

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha

Chemical Properties Trend	
How can you observe a chemical reaction?	
;	color cha
(%)	89,66%
on	30 secor
nmary	
	A
pt?	
ers received	
ken to answer (seconds)	
ails	American
	Answer
	√ □
	Х
	√ □
	√ 0
	√ □


√ □
√ □
√ □
√ Ω
√ □
Х
√ □
√ □
√ □
Х
√ □
√ □
√ □

	Score (p
color change	1043
color change	942
color change	847
color change	813
color change	980
color change	903
	0
color change	1062
color change	732
color change	968


color change	1025
color change	1045
color change	757
color change	1015
color change	988
color change	1048
color change	1028
color change	955
color change	752
color change	972
color change	1038
	0
color change	965
color change	958
color change	1032
	0
color change	875
color change	1042
color change	798

boiling		•
Х		
	0	
	0,00	

oints)	Current
	2007
	942
	847
	1666
	1882
	903
	815
	2012
	1626
	1771

1996
1949
1718
1943
1930
1992
1901
1838
752
1836
1807
0
1847
1917
1980
911
875
1995
1738
1730

freezing			•
	X		
		0	
		0,00	

Total Score (points)	Answer ti
	3,4
	3,5
	9,2
	17,2
	7,2
	5,8
	30
	2,3
	22,1
	7,9

4,5
3,3
20,6
5,1
6,7
3,1
4,3
8,7
14,9
7,7
3,7
0
8,1
8,5
4,1
30
7,5
3,5
18,1
· .

melting	
Х	
	0
	0,00
me (seconds)	

Block 4 -

3 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

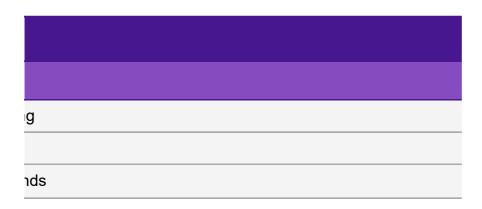
Brooke

CjCrUmP

Clay

Dahlia

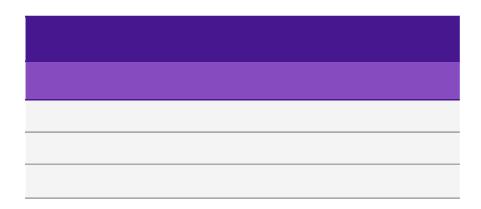
Felicity


GABEY

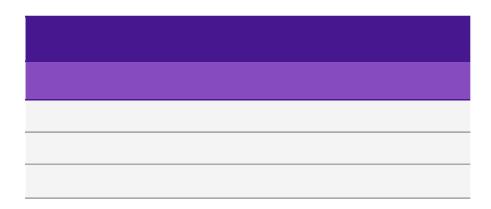
lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend	
Which is NOT a chemical reactio	n?
;	shreddir
(%)	89,66%
n	30 secon
nmary	
	▲
xt?	
ers received	
ken to answer (seconds)	
ails	Answer
	√ □
	X
	√ □
	√ □
	√ 1


√ □
√ □
√ □
√ Ω
√ □
Х
√ □
√ □
√ □
Х
√ □
√ □
√ □

	Score (p
shredding	1128
shredding	847
shredding	825
shredding	1082
shredding	1062
shredding	938
	0
shredding	1142
shredding	1128
shredding	1077


shredding	1142
shredding	1138
shredding	1147
shredding	1073
shredding	1100
shredding	1120
shredding	1033
shredding	1003
shredding	997
shredding	1048
shredding	1067
	0
shredding	1118
shredding	1145
shredding	1133
	0
shredding	973
shredding	1085
shredding	1132

acid based reactions	•
X	
0	
0,00	

oints)	Current
	3135
	1789
	1672
	2748
	2944
	1841
	815
	3154
	2754
	2848

3138
3087
2865
3016
3030
3112
2934
2841
1749
2884
2874
0
2965
3062
3113
911
1848
3080
2870

shredding	•
√ □	
26	
6,96	

Total Score (points)	Answer ti
	4,3
	15,2
	16,5
	7,1
	8,3
	9,7
	30
	3,5
	4,3
	7,4

3,5
3,7
3,2
7,6
6
4,8
10
11,8
6,2
9,1
8
0
4,9
3,3
4
30
7,6
6,9
4,1

burning of wood	
X	
	0
	0,00
me (seconds)	

Block 4 -

4 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

Brooke

CjCrUmP

Clay

Dahlia

Felicity

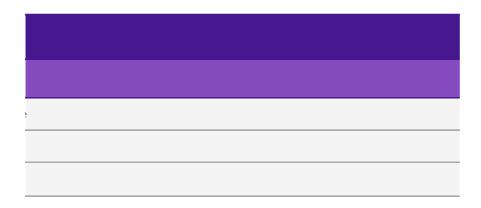
GABEY

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend What happens to valence electrons during ionic bonding? the atom (%) 51,72% 30 secor วท nmary ct? ers received ken to answer (seconds) ails Answer X **√**□ X **√**□ **√**□ X X X **√**□ X

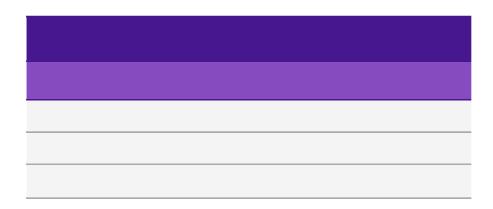
Х
√ □
√ 0
Х
√ □
√ □
Х
√ □
√ □
√ □
Х
Х
√ □
√ □
Х
Х
Х
√ □
√ □


s outer shell fills up, metals lose electrons to become positive

nds

the atom's outer shell fills up	*
√ □	
0	
0,00	

	Score (p
valence electrons are shared between them	0
metals lose electrons to become positive	933
valence electrons are shared between them	0
metals lose electrons to become positive	1152
metals lose electrons to become positive	1072
valence electrons are shared between them	0
	0
valence electrons are shared between them	0
metals lose electrons to become positive	1243
valence electrons are shared between them	0


valence electrons are shared between them	0
metals lose electrons to become positive	1145
metals lose electrons to become positive	1267
valence electrons are shared between them	0
metals lose electrons to become positive	1180
metals lose electrons to become positive	1162
valence electrons are shared between them	0
metals lose electrons to become positive	988
metals lose electrons to become positive	915
metals lose electrons to become positive	1012
valence electrons are shared between them	0
	0
metals lose electrons to become positive	1057
metals lose electrons to become positive	1023
valence electrons are shared between them	0
	0
valence electrons are shared between them	0
metals lose electrons to become positive	1047
metals lose electrons to become positive	1240

they don't go anywhere	•
X	
0	
0,00	

oints)	Current
	3135
	2722
	1672
	3900
	4016
	1841
	815
	3154
	3997
	2848

3138
4232
4132
3016
4210
4274
2934
3829
2664
3896
2874
0
4022
4085
3113
911
1848
4127
4110
1110

valence electrons are shared between them		-
X		
	11	
	11,99	

Total Score (points)	Answer ti
	8,6
	16
	12,7
	8,9
	13,7
	6,4
	30
	21,4
	3,4
	13,9

7,8
9,3
2
15,1
7,2
8,3
3,9
18,7
17,1
17,3
14,3
0
14,6
16,6
6,8
30
21
15,2
3,6

metals lose electrons to become positive	
√ □	
	15
	11,46
ima (aganda)	
me (seconds)	

Block 4 -

5 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

Brooke

CjCrUmP

Clay

Dahlia

Felicity

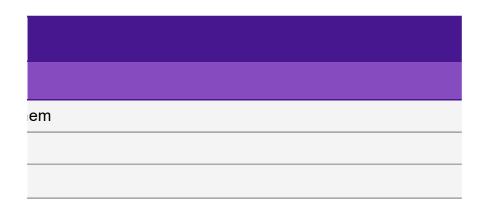
GABEY

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend What happens to valence electrons during covalent bonding?	
(%)	86,21%
on	30 secor
nmary	
	A
xt?	
ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	√1
	√□
	√ □
	√ □
	Х
	√ □
	√ □
	√ □

√ □
Х
√ □
Х
√ □
√ □
√ □
Х
√ □
√ □
√ □


's outer shell fills up, valence electrons are shared between th

nds

the atom's outer shell fills up	*
√□	
0	
0,00	

	Score (p
valence electrons are shared between them	923
valence electrons are shared between them	940
valence electrons are shared between them	828
valence electrons are shared between them	1267
valence electrons are shared between them	1320
valence electrons are shared between them	938
	0
valence electrons are shared between them	945
valence electrons are shared between them	1353
valence electrons are shared between them	948

valence electrons are shared between them	937
metals lose electrons to become positive	0
valence electrons are shared between them	1385
valence electrons are shared between them	948
valence electrons are shared between them	1355
valence electrons are shared between them	1333
valence electrons are shared between them	960
valence electrons are shared between them	1315
valence electrons are shared between them	1043
valence electrons are shared between them	1262
valence electrons are shared between them	932
	0
valence electrons are shared between them	1342
valence electrons are shared between them	1292
valence electrons are shared between them	952
	0
valence electrons are shared between them	808
valence electrons are shared between them	1293
valence electrons are shared between them	1352

they don't go anywhere	•
X	
0	
0,00	

oints)	Current
	4058
	3662
	2500
	5167
	5336
	2779
	815
	4099
	5350
	3796

4075
4232
5517
3964
5565
5607
3894
5144
3707
5158
3806
0
5364
5377
4065
911
2656
5420
5462

valence electrons are shared between them	
√ □	
25	
5,83	

Total Score (points)	Answer ti
	4,6
	21,6
	10,3
	8
	4,8
	3,7
	30
	3,3
	2,8
	3,1

3,8
6,7
0,9
3,1
2,7
4
2,4
5,1
15,4
8,3
4,1
0
3,5
6,5
2,9
30
11,5
6,4
2,9

metals lose electrons to become positive	
Х	
	1
	6,70
me (seconds)	

Block 4 -

6 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

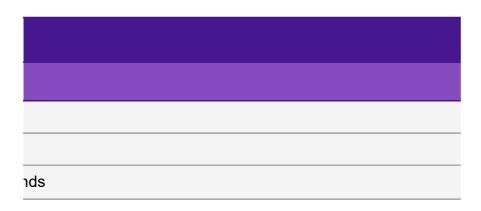
Brooke

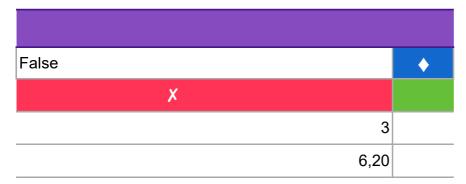
CjCrUmP

Clay

Dahlia

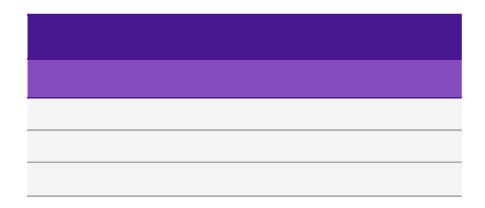
Felicity


GABEY


lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend	
Alkali Metals are the most reactive group of metals	
3	True
(%)	79,31%
on	30 secor
nmary	
	A
pt?	
vers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	Х
	Х
	Х
	√ □
	√ □
	√ □


Х
~
√ □
√ 0
√ 0
√ □
Х
√ □
√ □
√ □
Х
√ □
√ □
√ □

	Score (p
True	1055
True	1295
True	827
True	1203
False	0
False	0
	0
True	962
True	1445
True	1058

False	0
True	907
True	1488
True	1073
True	1447
True	1477
True	1082
True	1445
True	1107
True	1412
True	993
	0
True	1465
True	1420
True	1077
	0
True	1080
True	1428
True	1455

True			•
	√ □		
		23	
		5,22	

oints)	Current
	5113
	4957
	3327
	6370
	5336
	2779
	815
	5061
	6795
	4854

4075
5139
7005
5037
7012
7084
4976
6589
4814
6570
4799
0
6829
6797
5142
911
3736
6848
6917

	
Total Spare (nainte)	Anguarti
Total Score (points)	Answer ti
Total Score (points)	
Total Score (points)	Answer ti
Total Score (points)	2,7
Total Score (points)	
Total Score (points)	2,7 6,3
Total Score (points)	2,7 6,3 16,4
Total Score (points)	2,7 6,3
Total Score (points)	2,7 6,3 16,4 17,8
Total Score (points)	2,7 6,3 16,4
Total Score (points)	2,7 6,3 16,4 17,8
Total Score (points)	2,7 6,3 16,4 17,8
Total Score (points)	2,7 6,3 16,4 17,8 8 6,1
Total Score (points)	2,7 6,3 16,4 17,8
Total Score (points)	2,7 6,3 16,4 17,8 8 6,1 30
Total Score (points)	2,7 6,3 16,4 17,8 8 6,1
Total Score (points)	2,7 6,3 16,4 17,8 8 6,1 30 8,3
Total Score (points)	2,7 6,3 16,4 17,8 8 6,1 30

4,5
5,6
0,7
1,6
3,2
1,4
1,1
3,3
17,6
5,3
6,4
0
2,1
4,8
1,4
30
1,2
4,3
2,7

ime (seconds)		
ime (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
ime (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		
me (seconds)		

Block 4 -

7 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

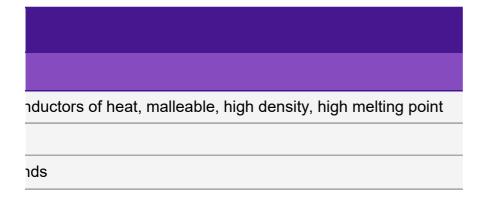
Brooke

CjCrUmP

Clay

Dahlia

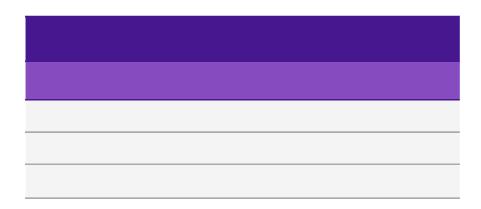
Felicity


GABEY

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend			
Which is NOT a chemical property of metals?			
;	good cor		
(%)	89,66%		
n	30 secon		
nmary			
	<u> </u>		
ot?			
ers received			
ken to answer (seconds)			
ails			
	Answer		
	√ □		
	√□		
	X		
	√ □		
	√ □		
	√ □		


√ 0
√ 0
√ 0
√ □
√ □
√ □
√ □
√ 0
√ □
√ 0
√ □
Х
√ ∆
√ ∆
√ □
Х
√ □
√ □
√ □

good conductors of heat	*
√ □	
1	
8,90	

	Score (
high melting point	1085
malleable	1210
good conductors of heat	1052
high density	1327
high melting point	840
high density	805
	0
high melting point	932
high melting point	1417
malleable	1038


high melting point	922
high density	997
high melting point	1488
high density	950
high density	1445
malleable	1438
malleable	1068
high density	1242
high density	1343
high density	1360
malleable	915
	0
high melting point	1362
high melting point	1388
high melting point	1148
	0
malleable	1120
high melting point	1350
high melting point	1467

malleable		•
√ □		
	6	
	10,10	

6196 616 4379 769 6170 3584 815 5999		
616 4379 769 6170 3584 815 5993 8212	oints)	Current
4379 769 6170 3584 815 5999 8212		6198
769° 6170 3584 815 5993		6167
6170 3584 815 5993 8212		4379
358- 815 5993 8213		7697
815 5993 8213		6176
5993 8212		3584
8212		815
		5993
5892		8212
l l		5892

4997
6136
8493
5987
8457
8522
6044
7831
6157
7930
5714
0
8191
8185
6290
911
4856
8198
8384

high density	-
√ □	
8	
9,99	

Total Score (points)	Answer ti
	6,9
	17,4
	8,9
	10,4
	9,6
	11,7
	30
	16,1
	5
	9,7

4,7
6,2
0,7
15
3,3
3,7
7,9
15,5
9,4
8,4
17,1
30
8,3
6,7
3,1
30
4,8
9
2

high melting point	
	/ D
	11
	6,55
	0,55
me (seconds)	

Block 4 -

8 Quiz

Correct answers

Players correct (

Question duratic

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

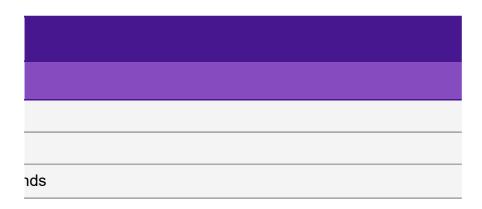
Brooke

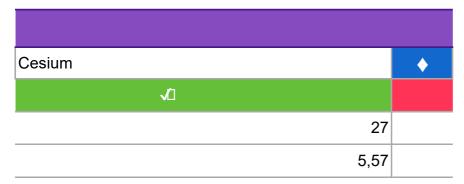
CjCrUmP

Clay

Dahlia

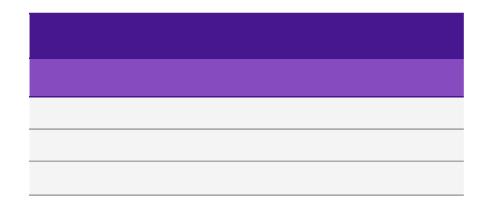
Felicity


GABEY

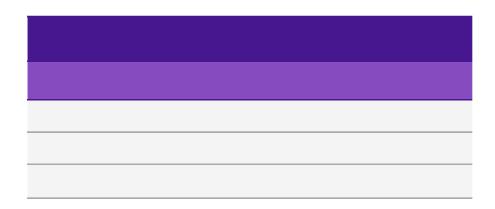

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend	
What's the most reactive metal element	t?
;	Cesium
(%)	93,10%
on	30 secor
nmary	
xt?	
vers received	
ken to answer (seconds)	
ails	Answer
	√ □
	Х
	√ □
	√ □
	√ □


√ □
√ □
Х
√ Ω
√ □
√ □

	Score (p
Cesium	1210
Cesium	1440
Cesium	1083
Cesium	1425
Cesium	978
Cesium	990
	0
Cesium	1098
Cesium	1468
Cesium	1245


Cesium 1022 Cesium 1138 Cesium 1488 Cesium 1250 Cesium 1447 Cesium 1452 Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1162 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397 Cesium 1433		
Cesium 1488 Cesium 1250 Cesium 1447 Cesium 1452 Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1022
Cesium 1250 Cesium 1447 Cesium 1452 Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1138
Cesium 1447 Cesium 1452 Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 0 0 Cesium 1202 Cesium 1397	Cesium	1488
Cesium 1452 Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1250
Cesium 1253 Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1447
Cesium 1372 Cesium 1343 Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1452
Cesium 1343 Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1253
Cesium 1355 Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 Cesium 1202 Cesium 1397	Cesium	1372
Cesium 1162 Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 0 0 Cesium 1202 Cesium 1397	Cesium	1343
Cesium 895 Cesium 1473 Cesium 1375 Cesium 1197 0 0 Cesium 1202 Cesium 1397	Cesium	1355
Cesium 1473 Cesium 1375 Cesium 1197 0 0 Cesium 1202 Cesium 1397	Cesium	1162
Cesium 1375 Cesium 1197 0 0 Cesium 1202 Cesium 1397	Cesium	895
Cesium 1197 0 1202 Cesium 1397	Cesium	1473
0 Cesium 1202 Cesium 1397	Cesium	1375
Cesium 1202 Cesium 1397	Cesium	1197
Cesium 1397		0
	Cesium	1202
Cesium 1433	Cesium	1397
	Cesium	1433

oints)	Current
	7408
	7607
	5462
	9122
	7154
	4574
	815
	7091
	9680
	7137

6019
7274
9981
7237
9904
9974
7297
9203
7500
9285
6876
895
9664
9560
7487
911
6058
9595
9817

Gold		-
X		
	0	
	0,00	

Total Score (points)	Answer ti
	5,4
	3,6
	13
	4,5
	7,3
	6,6
	30
	12,1
	1,9
	3,3

4,7
3,7
0,7
3
3,2
2,9
2,8
7,7
9,4
8,7
8,3
6,3
1,6
7,5
6,2
30
5,9
6,2
4

Copper	
Х	
	0
	0,00
me (seconds)	

Block 4 -

9 Quiz

Correct answers

Players correct (

Question duratic

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

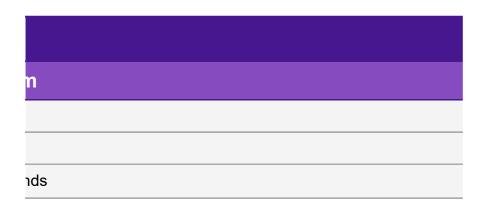
Brooke

CjCrUmP

Clay

Dahlia

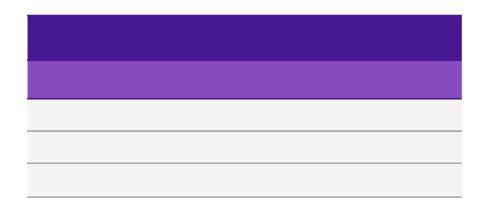
Felicity


GABEY

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha

Chemical Properties Trend	
Non-metals transfer electrons to metals when they react with ther	
;	False
(%)	55,17%
on	30 secor
nmary	
	A
pt?	
ers received	
ken to answer (seconds)	
ails	
	Answer
	X
	√ □
	√□
	Х
	√ □
	√ □
	Х
	√0
	√0
	X


√ □
√ □
√ 0
√ 0
Х
Х
√ □
Х
Х
Х
Х
Х
Х
√ □
√ 0
Х
√ □
√ 0
√ □

False		*
√ □		
	16	
	8,63	

	Score (p
True	0
False	1303
False	1272
True	0
False	950
False	963
	0
False	1257
False	1473
True	0

False	1090
False	1097
False	1487
False	1037
True	0
True	0
False	1275
True	0
False	1395
False	1325
	0
False	1270
False	1363
False	1443

oints)	Current
	7408
	8910
	6734
	9122
	8104
	5537
	815
	8348
	11153
	7137

7109 8371 11468 8274 9904 9974 8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	
11468 8274 9904 9904 9974 8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	 7109
8274 9904 9974 8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	8371
9904 9974 8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	11468
9974 8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	8274
8572 9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	9904
9203 7500 9285 6876 895 9664 10955 8812 911 7328 10958	9974
7500 9285 6876 895 9664 10955 8812 911 7328 10958	8572
9285 6876 895 9664 10955 8812 911 7328	9203
6876 895 9664 10955 8812 911 7328 10958	7500
895 9664 10955 8812 911 7328 10958	9285
9664 10955 8812 911 7328 10958	6876
10955 8812 911 7328 10958	895
8812 911 7328 10958	9664
911 7328 10958	10955
7328 10958	8812
10958	911
	7328
11260	10958
	11260

	•
Total Score (points)	Answer ti
Total Score (points)	
Total Score (points)	Answer ti
Total Score (points)	
Total Score (points)	5,1 11,8
Total Score (points)	5,1
Total Score (points)	5,1 11,8 7,7
Total Score (points)	5,1 11,8 7,7 10,5
Total Score (points)	5,1 11,8 7,7
Total Score (points)	5,1 11,8 7,7 10,5
Total Score (points)	5,1 11,8 7,7 10,5 15 14,2
Total Score (points)	5,1 11,8 7,7 10,5
Total Score (points)	5,1 11,8 7,7 10,5 15 14,2 30
Total Score (points)	5,1 11,8 7,7 10,5 15 14,2 30 8,6
Total Score (points)	5,1 11,8 7,7 10,5 15 14,2 30

6,6
12,2
0,8
21,8
4,9
1,4
7,5
16,9
6,7
12,4
28,9
11
6,9
6,3
4,5
30
7,8
8,2
3,4

me (seconds)		
me (seconds)		
ime (seconds)		
ime (seconds)		

Block 4 -

10 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

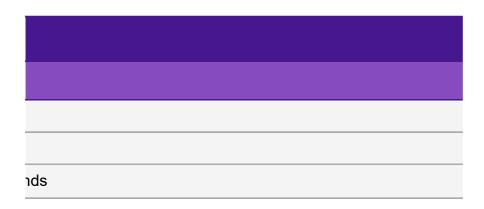
Brooke

CjCrUmP

Clay

Dahlia

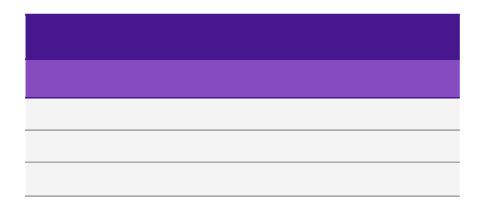
Felicity


GABEY

lan

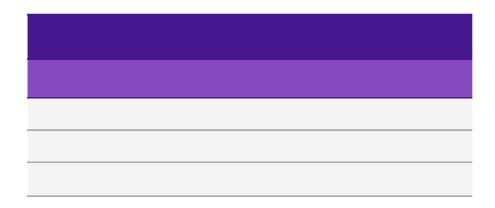
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend What is the most reactive non-metal element?	
(%)	93,10%
n	30 secon
nmary	
	A
ot?	
rers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	Х
	√ □
	√ □
	√ □


√ □
√ ∆
√ 0
√ 0
√ □
√ □
√ □
√ □
√ □
√ □
√ 0
√ □
√ 0
√ ∆
√ □
Х
√ □
√ Ω
√ □

Fluorine	•
√ □	
27	
4,67	

	Score (p
Fluorine	958
Fluorine	1175
Fluorine	1387
Fluorine	953
Fluorine	1245
Fluorine	1172
	0
Fluorine	1470
Fluorine	1480
Fluorine	907


Fluorine	1283
Fluorine	1328
Fluorine	1487
Fluorine	1477
Fluorine	922
Fluorine	977
Fluorine	1468
Fluorine	742
Fluorine	937
Fluorine	920
Fluorine	962
Fluorine	962
Fluorine	973
Fluorine	1443
Fluorine	1463
	0
Fluorine	1177
Fluorine	1468
Fluorine	1463

Sodium	•
X	
0	
0,00	

oints)	Current
	8366
	10085
	8121
	10075
	9349
	6709
	815
	9818
	12633
	8044

8392
9699
12955
9751
10826
10951
10040
9945
8437
10205
7838
1857
10637
12398
10275
911
8505
12426
12723

Chlorine		•
X		
	0	
	0,00	

Total Score (points)	Answer ti
	2,5
	19,5
	6,8
	2,8
	3,3
	7,7
	30
	1,8
	1,2
	5,6

1
4,3
0,8
1,4
4,7
1,4
1,9
15,5
3,8
4,8
2,3
2,3
1,6
3,4
2,2
30
19,4
1,9
2,2

Potassium	
Х	
	0
	0,00
ime (seconds)	

Block 4 -

11 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

Abdullah

Andrew

Aya

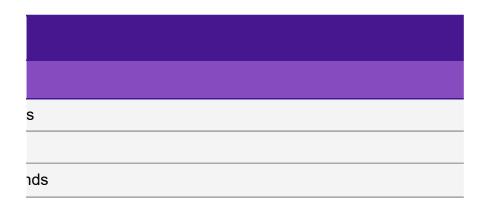
Brooke

CjCrUmP

Clay

Dahlia

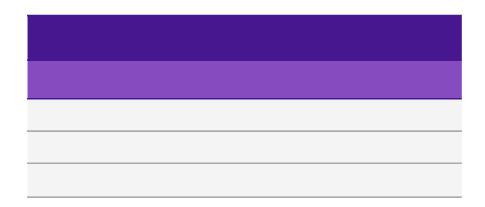
Felicity


GABEY

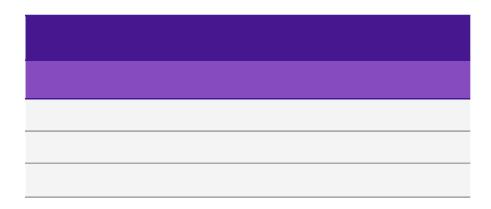

lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
Iorin
mason
millie
neha

Chemical Properties Trend	
What is the most reactive group of non-metals?	
;	Halogen
(%)	79,31%
on	30 secor
nmary	
10	<u> </u>
xt?	
vers received	
ken to answer (seconds)	
ails	
	Answer
	Х
	√ □
	Х
	√□
	√ □
	√ □


Х
√ 0
√ 0
√ □
Х
Х
√ □
√ □
Х
√ □
√ 0
√ □

	Score (p
Metalloids	0
Halogens	1443
Halogens	1387
Halogens	863
Halogens	1203
Halogens	1112
	0
Halogens	1283
Halogens	1477
Halogens	1040


Metalloids	0
Halogens	1442
Halogens	1485
Halogens	1333
Halogens	1048
Halogens	1082
Halogens	1415
Halogens	920
Halogens	857
Halogens	1023
Halogens	932
	0
Noble Gases	0
Halogens	1463
Halogens	1468
	0
Halogens	1433
Halogens	1390
Halogens	1458

oints)	Current
	8366
	11528
	9508
	10938
	10552
	7821
	815
	11101
	14110
	9084

8392
11141
14440
11084
11874
12033
11455
10865
9294
11228
8770
1857
10637
13861
11743
911
9938
13816
14181

Halogens		-
√ □		
	23	
	6,63	

Total Score (points)	Answer ti
	6,8
	3,4
	6,8
	14,2
	11,8
	17,3
	30
	13
	1,4
	3,6

9,1
3,5
0,9
10
3,1
1,1
5,1
10,8
14,6
4,6
10,1
30
16
2,2
1,9
30
4
6,6
2,5

Noble Gases			
Nobic Gases			
	Х		
			1
			16,00
me (seconds)			

Question Number	
1	Quiz

1	Quiz
1	Quiz
2	Quiz
2	Quiz

2 Quiz
2 Quiz

2	Quiz
2	Quiz
3	Quiz

3 Quiz
3 Quiz

3	Quiz
3	Quiz
4	Quiz

4 Quiz
4 Quiz

4	Quiz
4	Quiz
5	Quiz

5 Quiz
5 Quiz

5 Quiz
5 Quiz
6 Quiz

6	3 Quiz
6	3 Quiz
7	' Quiz

7	Quiz
7	Quiz

-	7 Quiz
-	7 Quiz
-	7 Quiz
-	7 Quiz
7	7 Quiz
7	7 Quiz
7	7 Quiz
-	7 Quiz
7	7 Quiz
8	8 Quiz

	_		_	_
8	3	Qı	Ji.	Z
8	3	Qı	Jİ	Z
8	3	Qı	Jİ	z
3	3	Qı	٦i	z
3	3	Qı	лi	z
3	3	Qı	лi	Z
3	3	Qı	ıi	z
3	3	Qı	Jİ	Z
8	3	Qı	٦İ	z
8	3	Qı	٦İ	z
3	3	Qı	ıi	z
8	3	Qı	Jİ.	z
8	3	Qı	Jİ.	z
8	3	Qı	Ji.	z
3	3	Qı	Jİ.	z
8	3	Qı	Ji.	z

8	3	Qı	Jİ	Z
8	3	Qι	лi	Z
8	3	Qı	ıi	Z
8	3	Qı	Jİ	Z
8	3	Qı	Jİ	Z
8	3	Qι	Jİ	Z
8	3	Qι	Jİ	Z
8	3	Qı	ıi	Z
8	3	Qι	Jİ	Z
g)	Qι	Jİ	Z
g)	Qι	Jİ	Z
g)	Qı	Jİ	Z
g)	Qı	Jİ	Z
g)	Qı	Jİ	Z
g)	Qı	Ji	z
S)	Qı	ıi	Z

9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz
9 Quiz

9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz

10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz
10 Quiz

1	10	Quiz
1	10	Quiz
1	10	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz
1	11	Quiz

•	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
,	11	Quiz
•	11	Quiz

Question
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"

Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
Define "chemical property"
How can you observe a chemical reaction?
How can you observe a chemical reaction?

How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?

How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
How can you observe a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?

Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?

Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
Which is NOT a chemical reaction?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?

What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?

What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during ionic bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?

What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding? What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
	What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?	What happens to valence electrons during covalent bonding?
	What happens to valence electrons during covalent bonding?

What happens to valence electrons during covalent bonding?
What happens to valence electrons during covalent bonding?
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals

Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Mikali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Mikali Metals are the most reactive group of metals	
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
Alkali Metals are the most reactive group of metals	Alkali Metals are the most reactive group of metals
	Alkali Metals are the most reactive group of metals
Which is NOT a chemical property of metals?	Alkali Metals are the most reactive group of metals
	Which is NOT a chemical property of metals?

Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	
Which is NOT a chemical property of metals?	

Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
Which is NOT a chemical property of metals?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?

What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element? What's the most reactive metal element?	What's the most reactive metal element?
What's the most reactive metal element?	What's the most reactive metal element?
	What's the most reactive metal element?
What's the most reactive metal element?	What's the most reactive metal element?
	What's the most reactive metal element?

What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
What's the most reactive metal element?
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them

Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them

Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
Non-metals transfer electrons to metals when they react with them
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?

What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?

What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive non-metal element?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?

What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?
What is the most reactive group of non-metals?

Answer 1	Answer 2
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction

rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
rearrangement of the physical structure of a substance	properties that becomes evident during or after a chemical reaction
color change	boiling
color change	boiling

boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling

boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
boiling
acid based reactions
acid based reactions
acid based reactions
acid based reactions
acid based reactions

rusting of iron acid based reactions rusting of iron acid based reactions		
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions	rusting of iron	acid based reactions
rusting of iron acid based reactions	rusting of iron	acid based reactions
	rusting of iron	acid based reactions
rusting of iron acid based reactions	rusting of iron	acid based reactions
	rusting of iron	acid based reactions

rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere		
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere they don't go anywhere they don't go anywhere	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere they don't go anywhere they don't go anywhere	rusting of iron	acid based reactions
rusting of iron acid based reactions rusting of iron acid based reactions rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	rusting of iron	acid based reactions
rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere they don't go anywhere they don't go anywhere	rusting of iron	acid based reactions
rusting of iron acid based reactions the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	rusting of iron	acid based reactions
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere they don't go anywhere	rusting of iron	acid based reactions
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	rusting of iron	acid based reactions
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up they don't go anywhere the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
	the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up they don't go anywhere	the atom's outer shell fills up	they don't go anywhere
	the atom's outer shell fills up	they don't go anywhere

the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere

the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere

the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere

the atom's outer shell fills up	they don't go anywhere
the atom's outer shell fills up	they don't go anywhere
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True

False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
good conductors of heat	malleable

malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable

malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
malleable
Iron
Iron
Iron
Iron

Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron

Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
Cesium	Iron
False	True
False	True
False	True
False	True
False	True
False	True
False	True

False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True
False	True

False	True
False	True
False	True
False	True
False	True
False	True
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium

Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium

Fluorine	Sodium
Fluorine	Sodium
Fluorine	Sodium
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids

Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids
Metalloids	Actinoids

Answer 3	Answer 4
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter

change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
change in which the form of matter is altered	can be observed or measured without changing the composition of matter
freezing	melting
freezing	melting

freezing melting freezing melting		
freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting freezing melting freezing melting	freezing	melting
freezing melting freezing melting	freezing	melting
freezing melting	freezing	melting
	freezing	melting
freezing melting	freezing	melting
	freezing	melting

freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
freezing	melting
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood

shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood

shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
shredding	burning of wood
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive

valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive

valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive

valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive

valence electrons are shared between them	metals lose electrons to become positive
valence electrons are shared between them	metals lose electrons to become positive

high density	high melting point

high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point
high density	high melting point

high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
high melting point
Copper
Copper
Copper
Copper

Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper

Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper
Gold	Copper

Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium

Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium
Potassium

Chlorine	Potassium
Chlorine	Potassium
Chlorine	Potassium
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases

Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases
Halogens	Noble Gases

Correct Answers	Time Allotted to Answer (seconds)
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60

properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
properties that becomes evident during or after a chemical reaction	60
color change	30
color change	30

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30		
color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
color change 30 shredding 30 shredding 30 shredding 30 shredding 30	color change	30
shredding 30 shredding 30 shredding 30 shredding 30	color change	30
shredding 30 shredding 30 shredding 30	color change	30
shredding 30 shredding 30	shredding	30
shredding 30	shredding	30
	shredding	30
shredding 30	shredding	30
	shredding	30

shredding	
Sincouning	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30

shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
shredding	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30

-	
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30

is a second of the second of t	
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, metals lose electrons to become positive	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30

the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30
the atom's outer shell fills up, valence electrons are shared between them	30

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
True	30
good conductors of heat, malleable, high density, high melting point	30

good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30

good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
good conductors of heat, malleable, high density, high melting point	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30

Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30

Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
Cesium	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30

False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30
False	30

False	30
False	30
False	30
False	30
False	30
False	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30

Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30
Fluorine	30

Fluorine	30
Fluorine	30
Fluorine	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30

Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30
Halogens	30

Players
Abdullah
Andrew
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn

Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew

Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice

campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP

Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant

jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity

GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel

logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh

Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason

millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon

Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah

Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir

beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke

CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace

grant
jen
jennings
liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia

Felicity
GABEY
lan
Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings

liesel
logan
lorin
mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan

Karanvir Singh
Lee
Melina
Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin

mason
millie
neha
Abdullah
Andrew
Aya
Brooke
CjCrUmP
Clay
Dahlia
Felicity
GABEY
lan
Karanvir Singh
Lee
Melina

Moon
Quinn
Sarah
Shaimir
beatrice
campbell
grace
grant
jen
jennings
liesel
logan
lorin
mason
millie
neha

Answer	Correct / Incorrect	Correct
properties that becomes evident during or after a chemical reaction	Correct	1
change in which the form of matter is altered	Incorrect	0
rearrangement of the physical structure of a substance	Incorrect	0
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
change in which the form of matter is altered	Incorrect	0
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1

ja .		
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
rearrangement of the physical structure of a substance	Incorrect	0
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
	Incorrect	0
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
change in which the form of matter is altered	Incorrect	0
properties that becomes evident during or after a chemical reaction	Correct	1
properties that becomes evident during or after a chemical reaction	Correct	1
color change	Correct	1
color change	Correct	1

color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
	Incorrect	0
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1
color change	Correct	1

Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
	Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

shredding	Correct	1
	Incorrect	0
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1

	Incorrect	0
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
	Incorrect	0
shredding	Correct	1
shredding	Correct	1
shredding	Correct	1
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
	Incorrect	0
valence electrons are shared between them	Incorrect	0

metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Incorrect	0
	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1

valence electrons are shared between them	Incorrect	0
	Incorrect	0
valence electrons are shared between them	Incorrect	0
metals lose electrons to become positive	Correct	1
metals lose electrons to become positive	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
	Incorrect	0
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1

metals lose electrons to become positive	Incorrect	0
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
	Incorrect	0
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
	Incorrect	0
valence electrons are shared between them	Correct	1

valence electrons are shared between them	Correct	1
valence electrons are shared between them	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
False	Incorrect	0
False	Incorrect	0
	Incorrect	0
True	Correct	1
True	Correct	1
True	Correct	1
False	Incorrect	0
True	Correct	1
True	Correct	1
True	Correct	1

True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
True	Correct	1
	Incorrect	0
True	Correct	1
True	Correct	1
True	Correct	1
	Incorrect	0
True	Correct	1
True	Correct	1
True	Correct	1
high melting point	Correct	1

Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
	Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

high density	Correct	1
high density	Correct	1
high density	Correct	1
malleable	Correct	1
	Incorrect	0
high melting point	Correct	1
high melting point	Correct	1
high melting point	Correct	1
	Incorrect	0
malleable	Correct	1
high melting point	Correct	1
high melting point	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1

Cesium	Correct	1
Cesium	Correct	1
	Incorrect	0
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1

Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
	Incorrect	0
Cesium	Correct	1
Cesium	Correct	1
Cesium	Correct	1
True	Incorrect	0
False	Correct	1
False	Correct	1
True	Incorrect	0
False	Correct	1
False	Correct	1
	Incorrect	0

False	Correct	1
False	Correct	1
True	Incorrect	0
False	Correct	1
False	Correct	1
False	Correct	1
False	Correct	1
True	Incorrect	0
True	Incorrect	0
False	Correct	1
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0
True	Incorrect	0

False	Correct	1
False	Correct	1
	Incorrect	0
False	Correct	1
False	Correct	1
False	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1
	Incorrect	0
Fluorine	Correct	1
Fluorine	Correct	1
Fluorine	Correct	1

Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Incorrect	0
	Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

Fluorine Correct 1 Fluorine Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	· · · · · · · · · · · · · · · · · · ·		
Fluorine Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Fluorine	Correct	1
Metalloids Incorrect 0 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Fluorine	Correct	1
Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Fluorine	Correct	1
Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Incorrect 0 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Metalloids	Incorrect	0
Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Incorrect 0 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1 Correct 1 0 Correct 1	Halogens	Correct	1
Halogens Correct 1 Halogens Correct 1 Incorrect 0 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Halogens Correct 1 Incorrect 0 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Incorrect 0 Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Halogens Correct 1 Halogens Correct 1 Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Halogens Correct 1 Halogens Correct 0 Metalloids Incorrect 0 Halogens Correct 1		Incorrect	0
Halogens Correct 1 Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Metalloids Incorrect 0 Halogens Correct 1	Halogens	Correct	1
Halogens Correct 1	Halogens	Correct	1
	Metalloids	Incorrect	0
Halogens Correct 1	Halogens	Correct	1
	Halogens	Correct	1

Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
Correct	1
	Correct Correct Correct Correct Correct Correct Incorrect Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

Incorrect	Score (points)	Score without Answer Streak Bonus (points)
0	964	964
1	0	0
1	0	0
0	853	853
0	902	902
1	0	0
0	815	815
0	950	950
0	894	894
0	803	803
0	971	971
0	904	904
0	961	961
0	928	928
0	942	942

0	944	944
0	873	873
0	883	883
1	0	0
0	864	864
0	769	769
1	0	0
0	882	882
0	959	959
0	948	948
0	911	911
1	0	0
0	953	953
0	940	940
0	1043	943
0	942	942

0	847	847
0	813	713
0	980	880
0	903	903
1	0	0
0	1062	962
0	732	632
0	968	868
0	1025	925
0	1045	945
0	757	657
0	1015	915
0	988	888
0	1048	948
0	1028	928
0	955	855

0	752	752
0	972	872
0	1038	938
1	0	0
0	965	865
0	958	858
0	1032	932
1	0	0
0	875	875
0	1042	942
0	798	698
0	1128	928
0	847	747
0	825	725
0	1082	882
0	1062	862

0	938	838
1	0	0
0	1142	942
0	1128	928
0	1077	877
0	1142	942
0	1138	938
0	1147	947
0	1073	873
0	1100	900
0	1120	920
0	1033	833
0	1003	803
0	997	897
0	1048	848
0	1067	867

1	0	0
0	1118	918
0	1145	945
0	1133	933
1	0	0
0	973	873
0	1085	885
0	1132	932
1	0	0
0	933	733
1	0	0
0	1152	852
0	1072	772
1	0	0
1	0	0
1	0	0

0	1243	943
1	0	0
1	0	0
0	1145	845
0	1267	967
1	0	0
0	1180	880
0	1162	862
1	0	0
0	988	688
0	915	715
0	1012	712
1	0	0
1	0	0
0	1057	757
0	1023	723

1	0	0
1	0	0
1	0	0
0	1047	747
0	1240	940
0	923	923
0	940	640
0	828	828
0	1267	867
0	1320	920
0	938	938
1	0	0
0	945	945
0	1353	953
0	948	948
0	937	937

1	0	0
0	1385	985
0	948	948
0	1355	955
0	1333	933
0	960	960
0	1315	915
0	1043	743
0	1262	862
0	932	932
1	0	0
0	1342	942
0	1292	892
0	952	952
1	0	0
0	808	808

0	1293	893
0	1352	952
0	1055	955
0	1295	895
0	827	727
0	1203	703
1	0	0
1	0	0
1	0	0
0	962	862
0	1445	945
0	1058	958
1	0	0
0	907	907
0	1488	988
0	1073	973

0	1447	947
0	1477	977
0	1082	982
0	1445	945
0	1107	707
0	1412	912
0	993	893
1	0	0
0	1465	965
0	1420	920
0	1077	977
1	0	0
0	1080	980
0	1428	928
0	1455	955
0	1085	885

0	1210	710
0	1052	852
0	1327	827
0	840	840
0	805	805
1	0	0
0	932	732
0	1417	917
0	1038	838
0	922	922
0	997	897
0	1488	988
0	950	750
0	1445	945
0	1438	938
0	1068	868

0	1242	742
0	1343	843
0	1360	860
0	915	715
1	0	0
0	1362	862
0	1388	888
0	1148	948
1	0	0
0	1120	920
0	1350	850
0	1467	967
0	1210	910
0	1440	940
0	1083	783
0	1425	925

0	978	878
0	990	890
1	0	0
0	1098	798
0	1468	968
0	1245	945
0	1022	922
0	1138	938
0	1488	988
0	1250	950
0	1447	947
0	1452	952
0	1253	953
0	1372	872
0	1343	843
0	1355	855

0	1162	862
0	895	895
0	1473	973
0	1375	875
0	1197	897
1	0	0
0	1202	902
0	1397	897
0	1433	933
1	0	0
0	1303	803
0	1272	872
1	0	0
0	950	750
0	963	763
1	0	0

0	1257	857
0	1473	973
1	0	0
0	1090	890
0	1097	797
0	1487	987
0	1037	637
1	0	0
1	0	0
0	1275	875
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0

0	1395	895
0	1325	925
1	0	0
0	1270	870
0	1363	863
0	1443	943
0	958	958
0	1175	675
0	1387	887
0	953	953
0	1245	945
0	1172	872
1	0	0
0	1470	970
0	1480	980
0	907	907

0	1283	983
0	1328	928
0	1487	987
0	1477	977
0	922	922
0	977	977
0	1468	968
0	742	742
0	937	937
0	920	920
0	962	962
0	962	962
0	973	973
0	1443	943
0	1463	963
1	0	0

0	1177	677
0	1468	968
0	1463	963
1	0	0
0	1443	943
0	1387	887
0	863	763
0	1203	803
0	1112	712
1	0	0
0	1283	783
0	1477	977
0	1040	940
1	0	0
0	1442	942
0	1485	985

0	1333	833
0	1048	948
0	1082	982
0	1415	915
0	920	820
0	857	757
0	1023	923
0	932	832
1	0	0
1	0	0
0	1463	963
0	1468	968
1	0	0
0	1433	933
0	1390	890
0	1458	958

Current Total Score (points)	Answer Time (%)
964	7.17%
0	61.50%
0	13.83%
853	29.50%
902	19.67%
0	23.67%
815	37.00%
950	10.00%
894	21.17%
803	39.50%
971	5.83%
904	19.17%
961	7.83%
928	14.50%
942	11.67%

944	11.17%
873	25.50%
883	23.33%
0	19.00%
864	27.17%
769	46.17%
0	0.00%
882	23.67%
959	8.17%
948	10.33%
911	17.83%
0	42.67%
953	9.33%
940	12.00%
2007	11.33%
942	11.67%

847	30.67%
1666	57.33%
1882	24.00%
903	19.33%
815	100.00%
2012	7.67%
1626	73.67%
1771	26.33%
1996	15.00%
1949	11.00%
1718	68.67%
1943	17.00%
1930	22.33%
1992	10.33%
1901	14.33%
1838	29.00%

752	49.67%
1836	25.67%
1807	12.33%
0	0.00%
1847	27.00%
1917	28.33%
1980	13.67%
911	100.00%
875	25.00%
1995	11.67%
1738	60.33%
3135	14.33%
1789	50.67%
1672	55.00%
2748	23.67%
2944	27.67%

1841	32.33%
815	100.00%
3154	11.67%
2754	14.33%
2848	24.67%
3138	11.67%
3087	12.33%
2865	10.67%
3016	25.33%
3030	20.00%
3112	16.00%
2934	33.33%
2841	39.33%
1749	20.67%
2884	30.33%
2874	26.67%

0	0.00%
2965	16.33%
3062	11.00%
3113	13.33%
911	100.00%
1848	25.33%
3080	23.00%
2870	13.67%
3135	28.67%
2722	53.33%
1672	42.33%
3900	29.67%
4016	45.67%
1841	21.33%
815	100.00%
3154	71.33%

3997	11.33%
2848	46.33%
3138	26.00%
4232	31.00%
4132	6.67%
3016	50.33%
4210	24.00%
4274	27.67%
2934	13.00%
3829	62.33%
2664	57.00%
3896	57.67%
2874	47.67%
0	0.00%
4022	48.67%
4085	55.33%

3113	22.67%
911	100.00%
1848	70.00%
4127	50.67%
4110	12.00%
4058	15.33%
3662	72.00%
2500	34.33%
5167	26.67%
5336	16.00%
2779	12.33%
815	100.00%
4099	11.00%
5350	9.33%
3796	10.33%
4075	12.67%

4232 22.33% 5517 3.00% 3964 10.33% 5565 9.00% 5607 13.33% 3894 8.00% 5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 4065 9.67% 911 100.00% 2656 38.33%		
3964 10.33% 5565 9.00% 5607 13.33% 3894 8.00% 5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	22.33%	4232
5565 9.00% 5607 13.33% 3894 8.00% 5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	3.00%	5517
5607 13.33% 3894 8.00% 5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	10.33%	3964
3894 8.00% 5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	9.00%	5565
5144 17.00% 3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	13.33%	5607
3707 51.33% 5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	8.00%	3894
5158 27.67% 3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	17.00%	5144
3806 13.67% 0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	51.33%	3707
0 0.00% 5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	27.67%	5158
5364 11.67% 5377 21.67% 4065 9.67% 911 100.00%	13.67%	3806
5377 21.67% 4065 9.67% 911 100.00%	0.00%	0
9.67% 911 100.00%	11.67%	5364
911 100.00%	21.67%	5377
	9.67%	4065
2656 38.33%	100.00%	911
	38.33%	2656

5420	21.33%
5462	9.67%
5113	9.00%
4957	21.00%
3327	54.67%
6370	59.33%
5336	26.67%
2779	20.33%
815	100.00%
5061	27.67%
6795	11.00%
4854	8.33%
4075	15.00%
5139	18.67%
7005	2.33%
5037	5.33%

7012 10.67%	7012
7084 4.67%	7084
4976 3.67%	4976
6589 11.00%	6589
4814 58.67%	4814
6570 17.67%	6570
4799 21.33%	4799
0.00%	0
6829 7.00%	6829
6797 16.00%	6797
5142 4.67%	5142
911 100.00%	911
3736 4.00%	3736
6848 14.33%	6848
6917 9.00%	6917
6198 23.00%	6198

6167 58.00 4379 29.67
4379 29.67
7697 34.67
6176 32.00
3584 39.00
815 100.00
5993 53.67
8212 16.67
5892 32.33
4997 15.67
6136 20.67
8493 2.33
5987 50.00
8457 11.00
8522 12.33
6044 26.33

51.67%
31.33%
28.00%
57.00%
100.00%
27.67%
22.33%
10.33%
100.00%
16.00%
30.00%
6.67%
18.00%
12.00%
43.33%
15.00%

7154	24.33%
4574	22.00%
815	100.00%
7091	40.33%
9680	6.33%
7137	11.00%
6019	15.67%
7274	12.33%
9981	2.33%
7237	10.00%
9904	10.67%
9974	9.67%
7297	9.33%
9203	25.67%
7500	31.33%
9285	29.00%

6876	27.67%
895	21.00%
9664	5.33%
9560	25.00%
7487	20.67%
911	100.00%
6058	19.67%
9595	20.67%
9817	13.33%
7408	17.00%
8910	39.33%
6734	25.67%
9122	35.00%
8104	50.00%
5537	47.33%
815	100.00%

8348	28.67%
11153	5.33%
7137	97.00%
7109	22.00%
8371	40.67%
11468	2.67%
8274	72.67%
9904	16.33%
9974	4.67%
8572	25.00%
9203	56.33%
7500	22.33%
9285	41.33%
6876	96.33%
895	36.67%
9664	23.00%

10955	21.00%
8812	15.00%
911	100.00%
7328	26.00%
10958	27.33%
11260	11.33%
8366	8.33%
10085	65.00%
8121	22.67%
10075	9.33%
9349	11.00%
6709	25.67%
815	100.00%
9818	6.00%
12633	4.00%
8044	18.67%

8392	3.33%
9699	14.33%
12955	2.67%
9751	4.67%
10826	15.67%
10951	4.67%
10040	6.33%
9945	51.67%
8437	12.67%
10205	16.00%
7838	7.67%
1857	7.67%
10637	5.33%
12398	11.33%
10275	7.33%
911	100.00%

8505	64.67%
12426	6.33%
12723	7.33%
8366	22.67%
11528	11.33%
9508	22.67%
10938	47.33%
10552	39.33%
7821	57.67%
815	100.00%
11101	43.33%
14110	4.67%
9084	12.00%
8392	30.33%
11141	11.67%
14440	3.00%

11084	33.33%
11001	00.0070
11874	10.33%
12033	3.67%
11455	17.00%
10865	36.00%
9294	48.67%
11228	15.33%
8770	33.67%
1857	100.00%
10637	53.33%
13861	7.33%
11743	6.33%
911	100.00%
9938	13.33%
13816	22.00%
14181	8.33%

Answer Time (seconds)	
	4,3
	36,9
	8,3
	17,7
	11,8
	14,2
	22,2
	6
	12,7
	23,7
	3,5
	11,5
	4,7
	8,7
	7

6,7 15,3 14 11,4 11,4 16,3 27,7 0 14,2 4,9 6,2 10,7 25,6 5,6 7,2 3,4 3,5	
14 11,4 16,3 27,7 0 14,2 4,9 6,2 10,7 25,6 5,6 7,2 3,4	6,7
11,4 16,3 27,7 0 14,2 4,9 6,2 10,7 25,6 5,6 7,2 3,4	15,3
16,3 27,7 0 14,2 4,9 6,2 10,7 25,6 5,6 7,2 3,4	14
27,7 0 14,2 4,9 6,2 10,7 25,6 5,6 7,2 3,4	11,4
14,2 4,9 6,2 10,7 25,6 5,6 7,2	16,3
14,2 4,9 6,2 10,7 25,6 5,6 7,2	27,7
4,9 6,2 10,7 25,6 5,6 7,2	0
6,2 10,7 25,6 5,6 7,2	14,2
10,7 25,6 5,6 7,2	4,9
25,6 5,6 7,2 3,4	6,2
5,6 7,2 3,4	10,7
3,4	25,6
3,4	5,6
	7,2
3,5	3,4
	3,5

9,2
17,2
7,2
5,8
30
2,3
22,1
7,9
4,5
3,3
20,6
5,1
6,7
3,1
4,3
8,7

14,9
7,7
3,7
0
8,1
8,5
4,1
30
7,5
3,5
18,1
4,3
15,2
16,5
7,1
8,3

9,7
30
3,5
4,3
7,4
3,5
3,7
3,2
7,6
6
4,8
10
11,8
6,2
9,1
8

0
4,9
3,3
4
30
7,6
6,9
4,1
8,6
16
12,7
8,9
13,7
6,4
30
21,4

3,4
13,9
7,8
9,3
2
15,1
7,2
8,3
3,9
18,7
17,1
17,3
14,3
0
14,6
16,6

6,8
30
21
15,2
3,6
4,6
21,6
10,3
8
4,8
3,7
30
3,3
2,8
3,1
3,8

6,7
0,9
3,1
2,7
4
2,4
5,1
15,4
8,3
4,1
0
3,5
6,5
2,9
30
11,5

6,4 2,9 2,7 6,3 16,4 17,8 8 6,1 30 8,3 3,3 2,5 4,5 5,6 0,7	
2,7 6,3 16,4 17,8 8 6,1 30 8,3 2,5 4,5 5,6	6,4
6,3 16,4 17,8 8 6,1 30 8,3 3,3 2,5 4,5 5,6	2,9
16,4 17,8 8 6,1 30 8,3 2,5 4,5 5,6	2,7
17,8 8 6,1 30 8,3 2,5 4,5 5,6 0,7	6,3
8 6,1 30 8,3 3,3 2,5 4,5 5,6	16,4
6,1 30 8,3 3,3 2,5 4,5 5,6	17,8
30 8,3 3,3 2,5 4,5 5,6	8
8,3 3,3 2,5 4,5 5,6	6,1
3,3 2,5 4,5 5,6	30
2,5 4,5 5,6	8,3
5,6 0,7	3,3
5,6 0,7	2,5
0,7	4,5
	5,6
1,6	0,7
	1,6

3,2
1,4
1,1
3,3
17,6
5,3
6,4
0
2,1
4,8
1,4
30
1,2
4,3
2,7
6,9

17,4
8,9
10,4
9,6
11,7
30
16,1
5
9,7
4,7
6,2
0,7
15
3,3
3,7
7,9

15,5 9,4 8,4 17,1 30 8,3 6,7 3,1 30 4,8 9 2 5,4 3,6 13	
8,4 17,1 30 8,3 6,7 3,1 30 4,8 9 2 5,4 3,6	15,5
17,1 30 8,3 6,7 3,1 30 4,8 9 2 5,4 3,6	9,4
30 8,3 6,7 3,1 30 4,8 9 2 5,4 3,6	8,4
8,3 6,7 3,1 30 4,8 9 2 5,4 3,6	17,1
6,7 3,1 30 4,8 9 2 5,4 3,6	30
3,1 30 4,8 9 2 5,4 3,6	8,3
30 4,8 9 2 5,4 3,6	6,7
4,8 9 2 5,4 3,6	3,1
9 2 5,4 3,6	30
5,4 3,6	4,8
5,4 3,6 13	9
3,6	2
13	5,4
	3,6
4,5	13
	4,5

7,3 6,6 30 12,1 1,9 3,3 4,7 3,7 0,7 3 2,9 2,8 7,7 9,4 8,7	
30 12,1 1,9 3,3 4,7 3,7 0,7 3 3,2 2,9 2,8 7,7 9,4	7,3
12,1 1,9 3,3 4,7 3,7 0,7 3 3,2 2,9 2,8 7,7 9,4	6,6
1,9 3,3 4,7 3,7 0,7 3 3,2 2,9 2,8 7,7 9,4	30
3,3 4,7 3,7 0,7 3 3,2 2,9 2,8 7,7	12,1
4,7 3,7 0,7 3 3,2 2,9 2,8 7,7	1,9
3,7 0,7 3 3,2 2,9 2,8 7,7	3,3
0,7 3 3,2 2,9 2,8 7,7	4,7
3,2 2,9 2,8 7,7	3,7
3,2 2,9 2,8 7,7 9,4	0,7
2,9 2,8 7,7 9,4	3
2,8 7,7 9,4	3,2
9,4	2,9
9,4	2,8
	7,7
8,7	9,4
	8,7

8,3
6,3
1,6
7,5
6,2
30
5,9
6,2
4
5,1
11,8
7,7
10,5
15
14,2
30

8,6 1,6 29,1 6,6 12,2 0,8 21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9 11	
29,1 6,6 12,2 0,8 21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9	8,6
6,6 12,2 0,8 21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9	1,6
12,2 0,8 21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9	29,1
0,8 21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9	6,6
21,8 4,9 1,4 7,5 16,9 6,7 12,4 28,9	12,2
4,9 1,4 7,5 16,9 6,7 12,4 28,9	0,8
1,4 7,5 16,9 6,7 12,4 28,9	21,8
7,5 16,9 6,7 12,4 28,9	4,9
16,9 6,7 12,4 28,9	1,4
6,7 12,4 28,9	7,5
12,4 28,9	16,9
28,9	6,7
11	12,4
	28,9
6,9	11
	6,9

6,3 4,5 30 7,8 8,2 3,4 2,5 19,5 6,8 2,8 3,3 7,7 30 1,8 1,2	
30 7,8 8,2 3,4 2,5 19,5 6,8 2,8 3,3 7,7 30 1,8 1,2	6,3
7,8 8,2 3,4 2,5 19,5 6,8 2,8 3,3 7,7 30 1,8	4,5
8,2 3,4 2,5 19,5 6,8 2,8 3,3 7,7 30 1,8	30
3,4 2,5 19,5 6,8 2,8 3,3 7,7 30 1,8	7,8
2,5 19,5 6,8 2,8 3,3 7,7 30 1,8	8,2
19,5 6,8 2,8 3,3 7,7 30 1,8	3,4
6,8 2,8 3,3 7,7 30 1,8	2,5
2,8 3,3 7,7 30 1,8	19,5
3,3 7,7 30 1,8	6,8
7,7 30 1,8	2,8
1,8 1,2	3,3
1,8	7,7
1,2	30
	1,8
5,6	1,2
	5,6

1
4,3
0,8
1,4
4,7
1,4
1,9
15,5
3,8
4,8
2,3
2,3
1,6
3,4
2,2
30

19,4
1,9
2,2
6,8
3,4
6,8
14,2
11,8
17,3
30
13
1,4
3,6
9,1
3,5
0,9

10
3,1
1,1
5,1
10,8
14,6
4,6
10,1
30
16
2,2
1,9
30
4
6,6
2,5