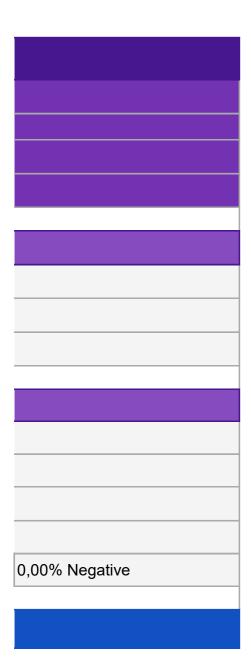
Overview

Block 2: Metallic Properties		
Played on	13 Nov 2019	
Hosted by	JenKrug	
Played with	30 players	
Played	10 of 10	

Overall Performance	
Total correct answers (%)	81,679
Total incorrect answers (%)	18,339
Average score (points)	9607,5


Feedback	
Number of responses	0
How fun was it? (out of 5)	0,00 o
Did you learn something?	0,00%
Do you recommend it?	0,00%
How do you feel?	•

Switch tabs/pages to view other result breakdown

Overview

%			
%			
50 points			
ut of 5			
Yes	0,00% No		
Yes	0,00% No		
0,00% Positive	0	0,00% Neutral	•

Overview

Block 2: Metallic Properties

Final Sco	res
Rank	Players
1	sophia
2	(((Jajuan)))
3	Wale (lil duub)
4	?? ronojoy ??
5	N8 Baker
6	Sam S
7	Gayatri
8	Dhanshree
9	conner parker
10	Will Paasch
11	Luke
12	alex demchenko
13	reba
14	maggie
15	shrey
16	Timothy
17	Andrew F
18	pravleen
19	riya
20	duncan
21	zoe
22	ashley
	I .

Final Scores

23	nya
24	Will
25	Sriveena
26	hunter
27	matt
28	Mo The Pro
29	julia
30	Arnav(>^<)

Final Scores

Total Score (points)	Correct Answers	Incorrect Answers
13487	10	0
12894	10	0
12826	10	0
12396	10	0
11887	10	0
11680	10	0
11608	9	1
11574	9	1
11023	9	1
10992	10	0
10927	9	1
10410	9	1
10402	8	2
10153	9	1
10110	9	1
10050	9	1
9801	8	2
9651	8	2
9584	8	2
9489	9	1
9359	8	2
9250	8	2

Final Scores

9075	8	2
8650	8	2
8039	8	2
7574	7	3
7384	7	3
5065	5	5
2090	2	8
795	1	9

Block 2: Metallic Properties

Kahoot! Sui	nmary
Rank	Players
1	sophia
2	(((Jajuan)))
3	Wale (lil duub)
4	?? ronojoy ??
5	N8 Baker
6	Sam S
7	Gayatri
8	Dhanshree
9	conner parker
10	Will Paasch
11	Luke
12	alex demchenko
13	reba
14	maggie
15	shrey

	,
16	Timothy
17	Andrew F
18	pravleen
19	riya
20	duncan
21	zoe
22	ashley
23	nya
24	Will
25	Sriveena
26	hunter
27	matt
28	Mo The Pro
29	julia
30	Arnav(>^<)

	, and the second
Total Score (points)	Q1
13487	892
12894	845
12826	870
12396	738
11887	565
11680	735
11608	1000
11574	907
11023	862
10992	735
10927	883
10410	913
10402	895
10153	970
10110	812

10050	868
9801	0
9651	918
9584	797
9489	520
9359	850
9250	902
9075	757
8650	745
8039	557
7574	0
7384	0
5065	783
2090	990
795	0

What are metallic properties?	Q2
Elements characterized by the tendency to give up electrons	1053
Elements characterized by the tendency to give up electrons	1007
Elements characterized by the tendency to give up electrons	962
Elements characterized by the tendency to give up electrons	932
Elements characterized by the tendency to give up electrons	975
Elements characterized by the tendency to give up electrons	955
Elements characterized by the tendency to give up electrons	1100
Elements characterized by the tendency to give up electrons	1100
Elements characterized by the tendency to give up electrons	1048
Elements characterized by the tendency to give up electrons	907
Elements characterized by the tendency to give up electrons	1022
Elements characterized by the tendency to give up electrons	1072
Elements characterized by the tendency to give up electrons	1090
Elements characterized by the tendency to give up electrons	1085
Elements characterized by the tendency to give up electrons	1017

	•
987	Elements characterized by the tendency to give up electrons
828	Elements characterized by the tendency to take electrons from other atoms
972	Elements characterized by the tendency to give up electrons
1012	Elements characterized by the tendency to give up electrons
848	Elements characterized by the tendency to give up electrons
1035	Elements characterized by the tendency to give up electrons
1032	Elements characterized by the tendency to give up electrons
867	Elements characterized by the tendency to give up electrons
960	Elements characterized by the tendency to give up electrons
910	Elements characterized by the tendency to give up electrons
927	Elements characterized by the tendency to take electrons from other atoms
780	Elements characterized by the tendency to take electrons from other atoms
890	Elements characterized by the tendency to give up electrons
1100	Elements characterized by the tendency to give up electrons
795	Elements characterized by the tendency to take electrons from other atoms

What is a noble metal?	Q3
Metals that resist oxidation as even when they are heated	1110
Metals that resist oxidation as even when they are heated	1040
Metals that resist oxidation as even when they are heated	1008
Metals that resist oxidation as even when they are heated	965
Metals that resist oxidation as even when they are heated	1018
Metals that resist oxidation as even when they are heated	925
Metals that resist oxidation as even when they are heated	1185
Metals that resist oxidation as even when they are heated	1183
Metals that resist oxidation as even when they are heated	1150
Metals that resist oxidation as even when they are heated	818
Metals that resist oxidation as even when they are heated	1065
Metals that resist oxidation as even when they are heated	1145
Metals that resist oxidation as even when they are heated	1200
Metals that resist oxidation as even when they are heated	970
Metals that resist oxidation as even when they are heated	1050

Metals that resist oxidation as even when they are heated	1028
Metals that resist oxidation as even when they are heated	
Metals that resist oxidation as even when they are heated	
Metals that resist oxidation as even when they are heated	1158
Metals that resist oxidation as even when they are heated	11145
Metals that resist oxidation as even when they are heated	1 1 1 1 1 3
Metals that resist oxidation as even when they are heated	unii
Metals that resist oxidation as even when they are heated	4/5
Metals that resist oxidation as even when they are heated	X/U
Metals that resist oxidation as even when they are heated	
Metals that resist oxidation as even when they are heated	U/IX
Metals that resist oxidation as even when they are heated	YXI)
Metals that resist oxidation as even when they are heated	11185
Metals that resist oxidation as even when they are heated	
Metals that resist oxidation as even when they are heated	

What are metalloids?	Q4
Have properties of both metals and non-metals	1172
Have properties of both metals and non-metals	1052
Have properties of both metals and non-metals	1132
Have properties of both metals and non-metals	1013
Have properties of both metals and non-metals	937
Have properties of both metals and non-metals	983
Have properties of both metals and non-metals	1300
Have properties of both metals and non-metals	1300
Have properties of both metals and non-metals	1270
Have properties of both metals and non-metals	858
Have properties of both metals and non-metals	1185
Have properties of both metals and non-metals	990
Have properties of both metals and non-metals	1292
Have properties of both metals and non-metals	1043
Have properties of both metals and non-metals	980

Have properties of both metals and non-metals	843
Have properties of both metals and non-metals	0
Have properties of both metals and non-metals	1038
Have properties of both metals and non-metals	1057
Have properties of both metals and non-metals	848
Have properties of both metals and non-metals	1068
Have properties of both metals and non-metals	1022
Have properties of both metals and non-metals	842
Have properties of both metals and non-metals	0
Have properties of both metals and non-metals	0
Have properties of both metals and non-metals	0
Have properties of both metals and non-metals	0
Have properties of both metals and non-metals	0
	0
	0

What is a sea of electrons?	Q5
What holds things in a solid state	2214
What holds things in a solid state	2134
What holds things in a solid state	2094
What holds things in a solid state	2200
What holds things in a solid state	2264
What holds things in a solid state	2060
What holds things in a solid state	2400
What holds things in a solid state	2384
What holds things in a solid state	2364
What holds things in a solid state	1980
What holds things in a solid state	2360
What holds things in a solid state	2316
What holds things in a solid state	2400
What holds things in a solid state	2100
What holds things in a solid state	2306

What holds things in a solid state	2146
A mixture or metallic solid solution that has a range of melting points	1920
What holds things in a solid state	2284
What holds things in a solid state	2280
What holds things in a solid state	2174
What holds things in a solid state	2120
What holds things in a solid state	2166
What holds things in a solid state	2186
A mixture or metallic solid solution that has a range of melting points	1680
	1600
The burst of electrons that are released when waves crash	1776
The burst of electrons that are released when waves crash	1840
A mixture or metallic solid solution that has a range of melting points	1330
	0
A mixture or metallic solid solution that has a range of melting points	0

What happens when you move down a group in the metals?	Q6
it increases in metallic property	1428
it increases in metallic property	1380
it increases in metallic property	1363
it increases in metallic property	1392
it increases in metallic property	1345
it increases in metallic property	1148
it increases in metallic property	1492
it increases in metallic property	1490
it increases in metallic property	1472
it increases in metallic property	1123
it increases in metallic property	1478
it increases in metallic property	1438
it increases in metallic property	1500
it increases in metallic property	1322
it increases in metallic property	1367

it increases in metallic property	1338
it increases in metallic property	952
it increases in metallic property	1478
it increases in metallic property	1482
it increases in metallic property	1347
it increases in metallic property	1468
it increases in metallic property	1373
it increases in metallic property	1412
it increases in metallic property	977
it increases in metallic property	968
it increases in metallic property	1055
it increases in metallic property	1007
it increases in metallic property	977
	0
	0

What are Actinide metals?	Q7
Heavy metals that are extremely unstable	1420
Heavy metals that are extremely unstable	1368
Heavy metals that are extremely unstable	1388
Heavy metals that are extremely unstable	1260
Heavy metals that are extremely unstable	1138
Heavy metals that are extremely unstable	1005
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	1013
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0

Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	1113
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	1060
Heavy metals that are extremely unstable	0
Heavy metals that are extremely unstable	1020
Heavy metals that are extremely unstable	1103
Heavy metals that are extremely unstable	1105
Heavy metals that are extremely unstable	983
Heavy metals that are extremely unstable	1105
Heavy metals that are extremely unstable	1070
Heavy metals that are extremely unstable	0
	0
	0

An alloy is a combination of metals with non-metals. What is an example of this?	Q8
Brass	1400
Brass	1373
Brass	1368
Brass	1280
Brass	1030
Brass	1293
Lawrencium	863
Lawrencium	973
Lawrencium	680
Brass	1060
Lawrencium	743
Lawrencium	763
Lawrencium	0
Lawrencium	833
Lawrencium	785

	735
Brass	1278
Lawrencium	958
Lawrencium	0
Brass	0
Lawrencium	0
Brass	0
Brass	0
Brass	1195
Brass	1110
Brass	0
Brass	0
Silicon	0
	0
	0

What type of bonding is common with metallic properties?	Q9
Ionic bonding	1363
lonic bonding	1310
Ionic bonding	1333
Ionic bonding	1148
Ionic bonding	1197
Ionic bonding	1288
Ionic bonding	1090
lonic bonding	1067
lonic bonding	1022
lonic bonding	1278
lonic bonding	1048
Ionic bonding	665
Covalent Bonding	940
Ionic bonding	902
Ionic bonding	655

•	
Ionic bonding	942
Ionic bonding	1307
Ionic bonding	0
Covalent Bonding	735
Covalent Bonding	732
Covalent Bonding	737
Covalent Bonding	775
Covalent Bonding	0
Ionic bonding	1118
Ionic bonding	0
Covalent Bonding	805
Covalent Bonding	847
	0
	0
	0

How do metallic properties affect chemical reactions?	Q10
The larger the metal atom the easier it is to lose valence electrons	1435
The larger the metal atom the easier it is to lose valence electrons	1385
The larger the metal atom the easier it is to lose valence electrons	1308
The larger the metal atom the easier it is to lose valence electrons	1468
The larger the metal atom the easier it is to lose valence electrons	1418
The larger the metal atom the easier it is to lose valence electrons	1288
The larger the metal atom the easier it is to lose valence electrons	1178
The larger the metal atom the easier it is to lose valence electrons	1170
The larger the metal atom the easier it is to lose valence electrons	1155
The larger the metal atom the easier it is to lose valence electrons	1220
The larger the metal atom the easier it is to lose valence electrons	1143
The larger the metal atom the easier it is to lose valence electrons	1108
The larger the metal atom the easier it is to lose valence electrons	1085
The larger the metal atom the easier it is to lose valence electrons	928
The larger the metal atom the easier it is to lose valence electrons	1138

The larger the metal atom the easier it is to lose valence electrons	1163
The larger the metal atom the easier it is to lose valence electrons	1383
The larger the metal atom the easier it is to gain electrons	933
The larger the metal atom the easier it is to lose valence electrons	1063
The larger the metal atom the easier it is to lose valence electrons	915
The larger the metal atom the easier it is to lose valence electrons	978
The larger the metal atom the easier it is to lose valence electrons	0
The smaller the metal atom the easier it is to lose valence electrons	933
The larger the metal atom the easier it is to lose valence electrons	0
	878
The larger the metal atom the easier it is to lose valence electrons	958
The larger the metal atom the easier it is to lose valence electrons	860
	0
	0
	0

Which element has the largest value in me properties?	etallic
	Francium

Franciun
Franciun
Silicon
Franciun
Franciun
Franciun
Franciun

Block 2: I

1 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

Dhanshree

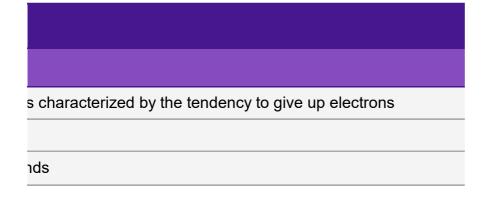
Gayatri

Luke

Mo The Pro

N8 Baker

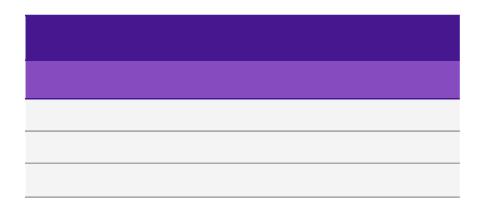
Sam S


Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenk
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties	
What are metallic properties?	
;	Element
(%)	86,67%
on	30 secon
nmary	
xt?	
rers received	
ken to answer (seconds)	
ails	Answer
	√ □
	Х
	Х
	√ □

1 Quiz


	√ □
	√ □
	√ □
	√ □
)	√ □
	Х
	√ □
	√ □
	X
	√ □

Elements characterized by the tendency to give up	•
electrons	
√□	
26	
10,84	

	Score (p
Elements characterized by the tendency to give up electrons	845
Elements characterized by the tendency to take electrons from other atoms	0
Elements characterized by the tendency to take electrons from other atoms	0
Elements characterized by the tendency to give up electrons	907
Elements characterized by the tendency to give up electrons	1000
Elements characterized by the tendency to give up electrons	883
Elements characterized by the tendency to give up electrons	783
Elements characterized by the tendency to give up electrons	565
Elements characterized by the tendency to give up electrons	735
Elements characterized by the tendency to give up electrons	557

Elements characterized by the tendency to give up	868
electrons	
Elements characterized by the tendency to give up electrons	870
Elements characterized by the tendency to give up	-
electrons	745
Elements characterized by the tendency to give up	
electrons	735
Elements characterized by the tendency to give up	913
electrons	913
Elements characterized by the tendency to give up	000
electrons	902
Elements characterized by the tendency to give up	000
electrons	862
Elements characterized by the tendency to give up	
electrons	520
Elements characterized by the tendency to take	
electrons from other atoms	0
Elements characterized by the tendency to give up	
	990
electrons	<u> </u>
Elements characterized by the tendency to give up electrons	970
Elements characterized by the tendency to take	
	0
electrons from other atoms	
Elements characterized by the tendency to give up	757
electrons Elements characterized by the tendency to give up	
Elements characterized by the tendency to give up	918
electrons	-
Elements characterized by the tendency to give up	895
electrons	
Elements characterized by the tendency to give up	797
electrons	
Elements characterized by the tendency to give up	812
electrons	
Elements characterized by the tendency to give up	892
electrons	
Elements characterized by the tendency to give up	850
electrons	
Elements characterized by the tendency to give up	738
electrons	

Elements characterized by the tendency to cause	
explosions	
X	
0	
0,00	

oints)	Current
	845
	0
	0
	907
	1000
	883
	783
	565
	735
	557

868
870
745
735
913
902
862
520
0
990
970
0
757
918
895
797
812
892
850
738

Elements characterized by the tendency to take	
electrons from other atoms	
X	
4	
11,15	

Total Score (points)	Answer ti
	9,3
	9,9
	11,1
	5,6
	0,3
	7
	13
	26,1
	15,9
	26,6

7,9
7,8
15,3
15,9
5,2
5,9
8,3
28,8
11,7
0,6
1,8
11,9
14,6
4,9
6,3
12,2
11,3
6,5
9
15,7
, .

Electrons that are in between the valence and	
nucleus X	
^	
	0
	0,00
	,
me (seconds)	

Block 2: I

2 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

Dhanshree

Gayatri

Luke

Mo The Pro

N8 Baker

Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenkc
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties	
What is a noble metal?	
;	Metals th
(%)	100,00%
on	30 secor
nmary	
	A
pt?	
ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	✓□
	√ □
	√ □

	√ □
	√ □
	√ □
	√ □
)	√ □
	√ □

nat resist oxidation as even when they are heated

Metals that used to be used for jewelry on kings	•
X	
0	
0,00	

	Score (p
Metals that resist oxidation as even when they are heated	1007
Metals that resist oxidation as even when they are heated	828
Metals that resist oxidation as even when they are heated	795
Metals that resist oxidation as even when they are heated	1100
Metals that resist oxidation as even when they are heated	1100
Metals that resist oxidation as even when they are heated	1022
Metals that resist oxidation as even when they are heated	890
Metals that resist oxidation as even when they are heated	975
Metals that resist oxidation as even when they are heated	955
Metals that resist oxidation as even when they are heated	910

Metals that resist oxidation as even when they are heated	987
Metals that resist oxidation as even when they are	962
heated Metals that regist evidetion as even when they are	
Metals that resist oxidation as even when they are	960
heated	-
Metals that resist oxidation as even when they are	907
heated	
Metals that resist oxidation as even when they are	1072
heated	
Metals that resist oxidation as even when they are	1032
heated	
Metals that resist oxidation as even when they are	1048
heated	
Metals that resist oxidation as even when they are	848
heated	0.0
Metals that resist oxidation as even when they are	927
heated	027
Metals that resist oxidation as even when they are	1100
heated	1100
Metals that resist oxidation as even when they are	1085
heated	1005
Metals that resist oxidation as even when they are	780
heated	700
Metals that resist oxidation as even when they are	867
heated	007
Metals that resist oxidation as even when they are	072
heated	972
Metals that resist oxidation as even when they are	1000
heated	1090
Metals that resist oxidation as even when they are	1010
heated	1012
Metals that resist oxidation as even when they are	101=
heated	1017
Metals that resist oxidation as even when they are	4050
heated	1053
Metals that resist oxidation as even when they are	1
heated	1035
Metals that resist oxidation as even when they are	+
heated	932
IIcalcu	

Metals that resist oxidation as even when they are	
heated	
√□	
30	
6,70	

oints)	Current
	1852
	828
	795
	2007
	2100
	1905
	1673
	1540
	1690
	1467

1855
1832
1705
1642
1985
1934
1910
1368
927
2090
2055
780
1624
1890
1985
1809
1829
1945
1885
1670

Metals that have properties of both metals and non-	
metals	
X	
0	
0,00	

Total Score (points)	Answer ti
	5,6
	10,3
	12,3
	0,4
	0,4
	4,7
	12,6
	7,5
	8,7
	11,4

6,8
8,3
8,4
11,6
1,7
4,1
3,1
15,1
4,4
0,2
0,9
13,2
14
7,7
0,6
5,3
5
2,8
3,9
10,1

Metals that have 1 valence electron in the 5d shell
X
0
0,00
ima (accanda)
me (seconds)

Block 2: I

3 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

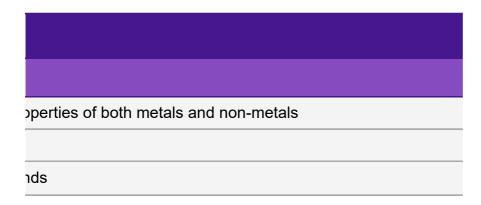
Dhanshree

Gayatri

Luke

Mo The Pro

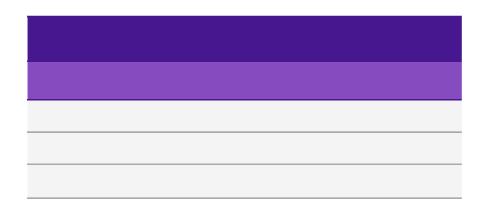
N8 Baker


Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties	
What are metalloids?	
	Have pro
(%)	93,33%
n	20 secor
nmary	
	A
pt?	
ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	Х
	√ □
	√∆
	<u>√</u>
	√ □


	√ □
	√ □
	√ □
	√ □
)	√ □
	Х
	√ □

Located in bottom of periodic table in f block section	•
X	
0	
0,00	

	Score (p
Have properties of both metals and non-metals	1040
Have properties of both metals and non-metals	1020
	0
Have properties of both metals and non-metals	1183
Have properties of both metals and non-metals	1185
Have properties of both metals and non-metals	1065
Have properties of both metals and non-metals	1085
Have properties of both metals and non-metals	1018
Have properties of both metals and non-metals	925
Have properties of both metals and non-metals	1033

Have properties of both metals and non-metals	1028
Have properties of both metals and non-metals	1008
Have properties of both metals and non-metals	870
Have properties of both metals and non-metals	818
Have properties of both metals and non-metals	1145
Have properties of both metals and non-metals	960
Have properties of both metals and non-metals	1150
Have properties of both metals and non-metals	1045
Have properties of both metals and non-metals	948
	0
Have properties of both metals and non-metals	970
Have properties of both metals and non-metals	980
Have properties of both metals and non-metals	975
Have properties of both metals and non-metals	1070
Have properties of both metals and non-metals	1200
Have properties of both metals and non-metals	1158
Have properties of both metals and non-metals	1050
Have properties of both metals and non-metals	1110
Have properties of both metals and non-metals	1103
Have properties of both metals and non-metals	965

Have properties of both metals and non-metals	•
√ □	
28	
6,01	

oints)	Current
	2892
	1848
	795
	3190
	3285
	2970
	2758
	2558
	2615
	2500

2883
2840
2575
2460
3130
2894
3060
2413
1875
2090
3025
1760
2599
2960
3185
2967
2879
3055
2988
2635

Metals that resist oxidation even when they are heated	
X	
0	
0,00	

Total Score (points)	Answer ti
	6,4
	3,2
	20
	0,7
	0,6
	5,4
	4,6
	7,3
	11
	6,7

6,9
7,7
13,2
15,3
2,2
9,6
2
6,2
6,1
20
9,2
4,8
9
5,2
0,3
1,7
6
3,6
3,9
9,4

Metals that are extremely unstable and not naturall	y
occurrina X	
	0
0,0	0
me (seconds)	
	_

Block 2: I

4 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

Dhanshree

Gayatri

Luke

Mo The Pro

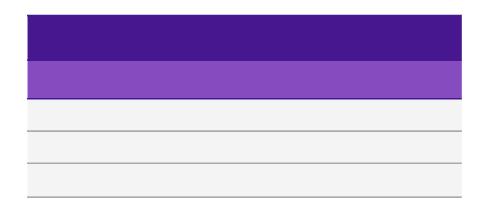
N8 Baker

Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

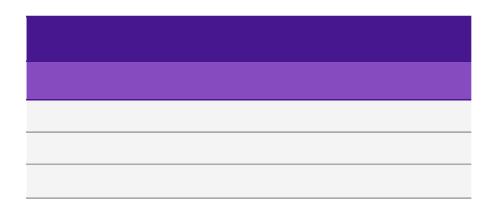
Metallic Properties	
What is a sea of electrons?	
;	What ho
(%)	73,33%
on	30 secon
nmary	
	A
pt?	
rers received	
ken to answer (seconds)	
-11-	
ails	
	Answer
	√ □
	X
	X
	√ □
	√ □
	√ □
	Х
	√ □
	√ □
	X


	√ □
	√ □
	Х
	√ □
)	√ □
	Х
	Х
	√ □
	Х
	√ □

lds things in a solid state		
nds		

A mixture or metallic solid solution that has a range	
of meltina points	
X	
4	
21,43	

	Score (p
What holds things in a solid state	1052
A mixture or metallic solid solution that has a range of melting points	0
A mixture or metallic solid solution that has a range of melting points	0
What holds things in a solid state	1300
What holds things in a solid state	1300
What holds things in a solid state	1185
A mixture or metallic solid solution that has a range of melting points	0
What holds things in a solid state	937
What holds things in a solid state	983
	0


What holds things in a solid state	843
What holds things in a solid state	1132
A mixture or metallic solid solution that has a range of melting points	0
What holds things in a solid state	858
What holds things in a solid state	990
What holds things in a solid state	1022
What holds things in a solid state	1270
What holds things in a solid state	848
The burst of electrons that are released when waves crash	0
	0
What holds things in a solid state	1043
The burst of electrons that are released when waves crash	0
What holds things in a solid state	842
What holds things in a solid state	1038
What holds things in a solid state	1292
What holds things in a solid state	1057
What holds things in a solid state	980
What holds things in a solid state	1172
What holds things in a solid state	1068
What holds things in a solid state	1013

What holds things in a solid state	•
√ □	
22	
14,68	

oints)	Current
	3944
	1848
	795
	4490
	4585
	4155
	2758
	3495
	3598
	2500

3726
3972
2575
3318
4120
3916
4330
3261
1875
2090
4068
1760
3441
3998
4477
4024
3859
4227
4056
3648

Unstable, radioactive elements	
X	
0	
0,00	

Total Score (points)	Answer ti
	14,9
	21,5
	21
	0,3
	0,2
	6,9
	27,2
	21,8
	19
	30

27,4
10,1
16
26,5
18,6
16,7
1,8
27,1
8,8
30
15,4
19,7
27,5
15,7
0,5
14,6
19,2
7,7
13,9
17,2

The burst of electrons that are released when waves crash	
X	
	2
	14,25
me (seconds)	

Block 2: I

5 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

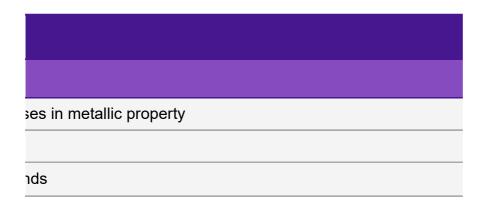
Dhanshree

Gayatri

Luke

Mo The Pro

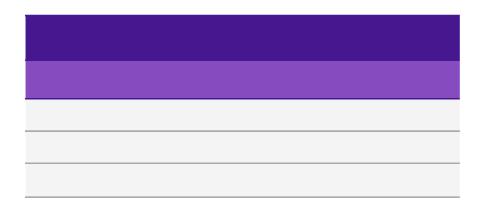
N8 Baker


Sam S

Sriveena

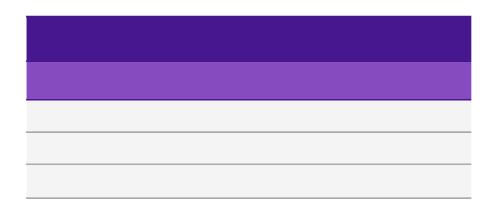
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties What happens when you move down a group in the metals? it increas (%) 93,33% 30 secor on nmary ct? ers received ken to answer (seconds) ails Answer **√**□ **√**□ X **√**□ **√**□ **√**□ **√**□ **√**□ **√**□ **√**□


	√ □
	√ □
	√ 0
	√ Ω
)	√ □
	Х
	√ □
	√ Ω
	√ □
	√ □
	√ □

lonic bonding and electricity is harder to be conducted	•
X	
0	
0,00	

	Score (p
it increases in metallic property	2134
it increases in metallic property	1920
	0
it increases in metallic property	2384
it increases in metallic property	2400
it increases in metallic property	2360
it increases in metallic property	1330
it increases in metallic property	2264
it increases in metallic property	2060
it increases in metallic property	1600


it increases in metallic property	2146
it increases in metallic property	2094
it increases in metallic property	1680
it increases in metallic property	1980
it increases in metallic property	2316
it increases in metallic property	2166
it increases in metallic property	2364
it increases in metallic property	2174
it increases in metallic property	1776
	0
it increases in metallic property	2100
it increases in metallic property	1840
it increases in metallic property	2186
it increases in metallic property	2284
it increases in metallic property	2400
it increases in metallic property	2280
it increases in metallic property	2306
it increases in metallic property	2214
it increases in metallic property	2120
it increases in metallic property	2200
1	

it decreases in metallic property	•
X	
0	
0,00	

oints)	Current
	6078
	3768
	795
	6874
	6985
	6515
	4088
	5759
	5658
	4100

5872
6066
4255
5298
6436
6082
6694
5435
3651
2090
6168
3600
5627
6282
6877
6304
6165
6441
6176
5848

it increases in metallic property	
√ □	
28	
6,16	

Total Score (points)	Answer ti
	8
	2,4
	30
	0,5
	0,3
	1,2
	20,1
	4,1
	10,2
	12

7,6
9,2
9,6
12,6
2,5
7
1,1
6,8
6,7
30
9
4,8
6,4
3,5
0,4
3,6
2,8
5,6
8,4
6

lonic bonding improves but electricity is harder to be conducted
Х
0
0,00
,
me (seconds)

Block 2: I

6 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

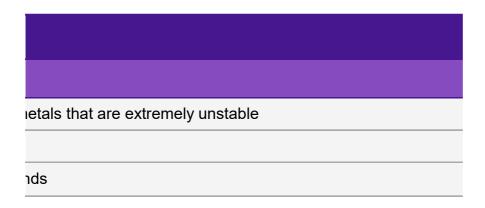
Dhanshree

Gayatri

Luke

Mo The Pro

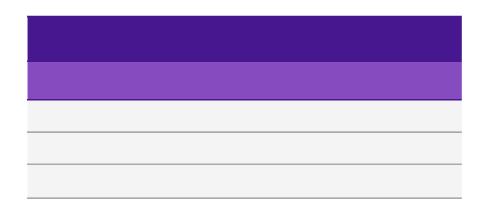
N8 Baker


Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenk
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties	
What are Actinide metals?	
;	Heavy m
(%)	93,33%
n	30 secor
nmary	
	<u> </u>
xt?	
rers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	Х
	√ □


	√ □
	√ 0
	√ □
	√ 0
)	√ □
	Х
	√ □

Light elements that are stable	•
X	
0	
0,00	

	Score (p
Heavy metals that are extremely unstable	1380
Heavy metals that are extremely unstable	952
	0
Heavy metals that are extremely unstable	1490
Heavy metals that are extremely unstable	1492
Heavy metals that are extremely unstable	1478
Heavy metals that are extremely unstable	977
Heavy metals that are extremely unstable	1345
Heavy metals that are extremely unstable	1148
Heavy metals that are extremely unstable	968

Heavy metals that are extremely unstable	1338
Heavy metals that are extremely unstable	1363
Heavy metals that are extremely unstable	977
Heavy metals that are extremely unstable	1123
Heavy metals that are extremely unstable	1438
Heavy metals that are extremely unstable	1373
Heavy metals that are extremely unstable	1472
Heavy metals that are extremely unstable	1347
Heavy metals that are extremely unstable	1055
	0
Heavy metals that are extremely unstable	1322
Heavy metals that are extremely unstable	1007
Heavy metals that are extremely unstable	1412
Heavy metals that are extremely unstable	1478
Heavy metals that are extremely unstable	1500
Heavy metals that are extremely unstable	1482
Heavy metals that are extremely unstable	1367
Heavy metals that are extremely unstable	1428
Heavy metals that are extremely unstable	1468
Heavy metals that are extremely unstable	1392
1	

Metals that are acidic	•
X	
0	
0,00	

oints)	Current
	7458
	4720
	795
	8364
	8477
	7993
	5065
	7104
	6806
	5068

7210
7429
5232
6421
7874
7455
8166
6782
4706
2090
7490
4607
7039
7760
8377
7786
7532
7869
7644
7240

Heavy metals that are extremely unstable	-
√ □	
2	28
6,5	0

Total Score (points)	Answer ti
	7,2
	8,9
	30
	0,6
	0,5
	1,3
	7,4
	9,3
	21,1
	7,9

9,7
8,2
7,4
22,6
3,7
7,6
1,7
9,2
2,7
30
10,7
5,6
5,3
1,3
0,4
1,1
8
4,3
1,9
6,5
-, -

Metals with stable isotopes	
Х	
	0
	0,00
me (seconds)	

Block 2: I

7 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

Dhanshree

Gayatri

Luke

Mo The Pro

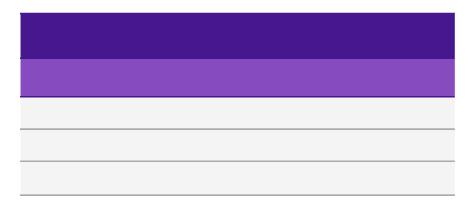
N8 Baker

Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

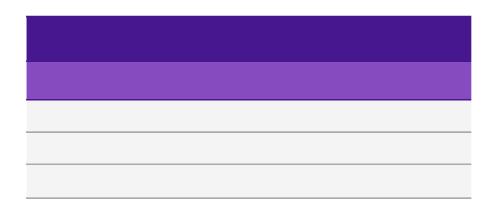
Metallic Properties	
An alloy is a combination of metals with non-metals. What	is an e
;	Brass
(%)	50,00%
n	20 secor
nmary	
	A
pt?	
ers received	
ken to answer (seconds)	
ails	
	Answer
	√ □
	√ □
	Х
	Х
	Х
	Х
	Х
	√ □
	√ □
	√ 1


	Х
	√ 0
	√ □
	√ □
)	Х
	√ □
	Х
	√ 0
	√ □
	Х
	X
	√ □
	√ □
	Х
	Х
	Х
	Х
	√ □
	Х
	√ □

xample of this?		
nds		

Lawrencium	*
X	
11	
2,31	

	Score (p
Brass	1368
Brass	1113
	0
Lawrencium	0
Lawrencium	0
Lawrencium	0
Silicon	0
Brass	1138
Brass	1005
Brass	983


	0
Brass	1388
Brass	1105
Brass	1013
Lawrencium	0
Brass	1020
Lawrencium	0
Brass	1060
Brass	1105
	0
Lawrencium	0
Brass	1070
Brass	1103
Lawrencium	0
Brass	1420
Lawrencium	0
Brass	1260

Silicon			•
	X		
		1	
		18,70	

Current 8826 5833 795 8364 8477 7993 5065 8242 7811 6051		
5833 795 8364 8477 7993 5065 8242 7811	oints)	Current
795 8364 8477 7993 5065 8242 7811		8826
8364 8477 7993 5065 8242 7811		5833
8477 7993 5065 8242 7811		795
7993 5065 8242 7811		8364
5065 8242 7811		8477
8242 7811		7993
7811		5065
		8242
6051		7811
		6051

7210
8817
6337
7434
7874
8475
8166
7842
5811
2090
7490
5677
8142
7760
8377
7786
7532
9289
7644
8500

Total Score (points)	Answer t
	5,3
	3,5
	20
	0,2
	0,6
	0,5
	18,7
	14,5
	19,8
	8,7

20 4,5 3,8 19,5 0,8 19,2 0,8 17,6 3,8 20 18 5,2
3,8 19,5 0,8 19,2 0,8 17,6 3,8 20 18
19,5 0,8 19,2 0,8 17,6 3,8 20
0,8 19,2 0,8 17,6 3,8 20
19,2 0,8 17,6 3,8 20 18
0,8 17,6 3,8 20 18
17,6 3,8 20 18
3,8 20 18
20 18
18
5,2
'
15,9
1,6
0,5
0,7
0,7
3,2
1
9,6

Brass	
√ 0	
	15
	10,27
me (seconds)	

Block 2: I

8 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

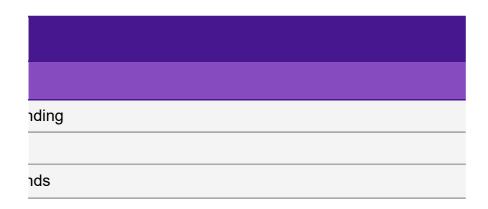
Dhanshree

Gayatri

Luke

Mo The Pro

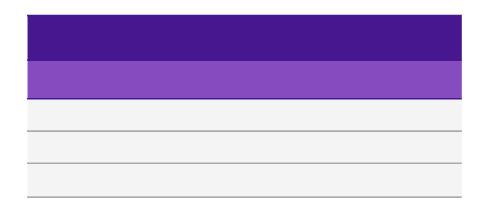
N8 Baker


Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenk
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties What type of bonding is common with metallic properties? Ionic bor (%) 63,33% 20 secor วท nmary ct? ers received ken to answer (seconds) ails Answer **√**□ **√**□ X **√**□ **√**□ **√**□ X **√**□ **√**□ **√**□


Δ Δ Δ Δ X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X
X X X X
X X X X
X X X X
X A
X
X
X
√ □
X
X
√ □
√ □
X
√ □

Ionic bonding	*
√ □	
19	
7,76	

	Score (p
lonic bonding	1373
Ionic bonding	1278
	0
Ionic bonding	973
Ionic bonding	863
Ionic bonding	743
	0
Ionic bonding	1030
Ionic bonding	1293
Ionic bonding	1110

lonic bonding	735
lonic bonding	1368
lonic bonding	1195
lonic bonding	1060
lonic bonding	763
Covalent Bonding	0
lonic bonding	680
Covalent Bonding	0
Covalent Bonding	0
	0
lonic bonding	833
Covalent Bonding	0
Covalent Bonding	0
lonic bonding	958
Covalent Bonding	0
Covalent Bonding	0
lonic bonding	785
lonic bonding	1400
Covalent Bonding	0
lonic bonding	1280

oints)	Current
	10199
	7111
	795
	9337
	9340
	8736
	5065
	9272
	9104
	7161

7945
10185
7532
8494
8637
8475
8846
7842
5811
2090
8323
5677
8142
8718
8377
7786
8317
10689
7644
9780

	•
Total Score (points)	Answer ti
Total Score (points)	Answer ti
Total Score (points)	
Total Score (points)	5,1
Total Score (points)	5,1 0,9
Total Score (points)	5,1 0,9 20
Total Score (points)	5,1 0,9 20 1,1
Total Score (points)	5,1 0,9 20 1,1 5,5
Total Score (points)	5,1 0,9 20 1,1 5,5 10,3
Total Score (points)	5,1 0,9 20 1,1 5,5 10,3 20

10,6
5,3
4,2
17,6
9,5
13
12,8
9,6
7,5
20
6,7
8,2
17,8
1,7
5,5
1,5
8,6
4
9,8
8,8

ima (accanda)	
ime (seconds)	
me (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	
ime (seconds)	

Block 2: I

9 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

Dhanshree

Gayatri

Luke

Mo The Pro

N8 Baker

Sam S

Sriveena

Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenk
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties	
How do metallic properties affect ch	emical reactions?
;	The larg
(%)	80,00%
n	30 secon
nmary	
	<u> </u>
pt?	
ers received	
ken to answer (seconds)	
-11-	
ails	
	Answer
	√□
	√ □
	X
	√□
	√ □
	√ □
	X
	√□
	√ □
	×

	√ □
	√ □
	√ □
	√ □
)	√ □
	Х
	√ □
	√ □
	Х
	Х
	√ □

er the metal atom the easier it is to lose valence electrons

nds

The smaller the metal atom the easier it is to lose	
valence electrons	
X	
1	
19,80	

	Score (p
The larger the metal atom the easier it is to lose valence electrons	1310
The larger the metal atom the easier it is to lose valence electrons	1307
	0
The larger the metal atom the easier it is to lose valence electrons	1067
The larger the metal atom the easier it is to lose valence electrons	1090
The larger the metal atom the easier it is to lose valence electrons	1048
	0
The larger the metal atom the easier it is to lose valence electrons	1197
The larger the metal atom the easier it is to lose valence electrons	1288
	0

The larger the metal atom the easier it is to lose valence electrons	942
The larger the metal atom the easier it is to lose	
valence electrons	1333
The larger the metal atom the easier it is to lose	
valence electrons	1118
The larger the metal atom the easier it is to lose	4070
valence electrons	1278
The larger the metal atom the easier it is to lose	665
valence electrons	005
The larger the metal atom the easier it is to lose	775
valence electrons	113
The larger the metal atom the easier it is to lose	1022
valence electrons	.022
The larger the metal atom the easier it is to lose	732
valence electrons	
The larger the metal atom the easier it is to lose	805
valence electrons	
	0
The larger the metal atom the easier it is to lose	902
valence electrons	302
The larger the metal atom the easier it is to lose	847
valence electrons	0 17
The smaller the metal atom the easier it is to lose	0
valence electrons	
The larger the metal atom the easier it is to gain	0
electrons The larger the metal stem the engine it is to less	
The larger the metal atom the easier it is to lose	940
valence electrons The larger the metal atom the easier it is to lose	
valence electrons	735
The larger the metal atom the easier it is to lose	
valence electrons	655
The larger the metal atom the easier it is to lose	4000
valence electrons	1363
The larger the metal atom the easier it is to lose	707
valence electrons	737
The larger the metal atom the easier it is to lose	11/0
valence electrons	1148

The larger the metal atom the easier it is to lose	
valence electrons	
√□	
24	
11,99	

oints)	Current
	11509
	8418
	795
	10404
	10430
	9784
	5065
	10469
	10392
	7161

8887
11518
8650
9772
9302
9250
9868
8574
6616
2090
9225
6524
8142
8718
9317
8521
8972
12052
8381
10928

The larger the metal atom the easier it is to gain	
electrons	
X	
1	
7,40	

Total Score (points)	Answer ti
	11,4
	5,6
	30
	2
	0,6
	3,1
	30
	18,2
	12,7
	30

9,5
10
16,9
13,3
26,1
13,5
4,7
16,1
11,7
30
11,9
9,2
19,8
7,4
3,6
15,9
26,7
8,2
15,8
21,1

The smaller the metal atom the more electrons	
there are	
	0
	0,00
me (seconds)	

Block 2: I

10 Quiz

Correct answers

Players correct (

Question duration

Answer Sun

Answer options

Is answer correct

Number of answ

Average time tal

Answer Deta

Players

(((Jajuan)))

Andrew F

Arnav(>^<)

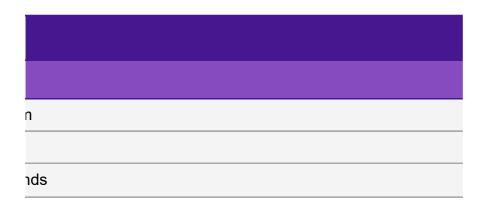
Dhanshree

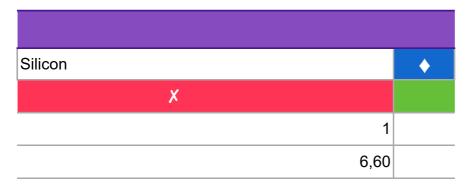
Gayatri

Luke

Mo The Pro

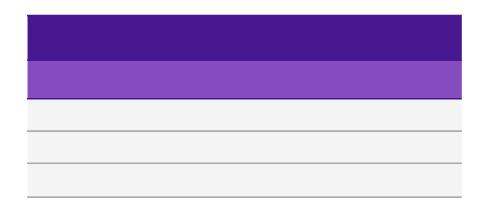
N8 Baker


Sam S


Sriveena

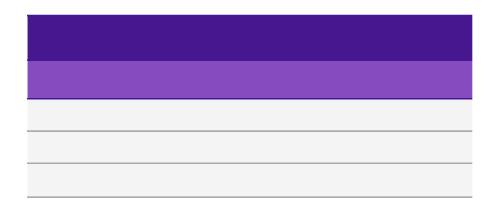
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenk
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Metallic Properties Which element has the largest value in metallic properties? Franciun (%) 83,33% 20 secor on nmary ct? ers received ken to answer (seconds) ails Answer **√**□ **√**□ X **√**□ **√**□ **√**□ X **√**□ **√**□ **√**□


	√ □
	√ □
	Х
	√ □
)	√ □
	Х
	√ □
	√ □
	√ □
	Х
	√ □

	Score (p
Francium	1385
Francium	1383
	0
Francium	1170
Francium	1178
Francium	1143
	0
Francium	1418
Francium	1288
Francium	878

Francium	1163
Francium	1308
	0
Francium	1220
Francium	1108
Silicon	0
Francium	1155
Francium	915
Francium	958
	0
Francium	928
Francium	860
Francium	933
Francium	933
Francium	1085
Francium	1063
Francium	1138
Francium	1435
Francium	978
Francium	1468



Francium				•
	√ □			
			25	
			4,35	

oints)	Current
	12894
	9801
	795
	11574
	11608
	10927
	5065
	11887
	11680
	8039

10 Quiz

10050
12826
8650
10992
10410
9250
11023
9489
7574
2090
10153
7384
9075
9651
10402
9584
10110
13487
9359
12396

Total Score (points)	Answer ti
	4,6
	4,7
	20
	1,2
	0,9
	2,3
	20
	3,3
	8,5
	4,9

1,5
7,7
20
11,2
3,7
6,6
1,8
7,4
5,7
20
10,9
9,6
2,7
2,7
0,6
1,5
2,5
2,6
4,9
1,3
.,0

Beryllium	
Х	
	0
	0,00
ime (seconds)	

Question Number		
,	1	Quiz
	1	Quiz
,	1	Quiz
	1	Quiz

1 Quiz
1 Quiz
2 Quiz

2	2 Quiz
2	2 Quiz

:	2	Quiz
:	2	Quiz
:	2	Quiz
;	2	Quiz
,	2	Quiz
;	2	Quiz
;	2	Quiz
:	2	Quiz
;	2	Quiz
:	2	Quiz
;	3	Quiz
;	3	Quiz
,	3	Quiz

3	Quiz
3	Quiz

3	Quiz
3	Quiz
4	Quiz

4 Quiz
4 Quiz

4	l Quiz
4	l Quiz
5	5 Quiz

	5	Qu	iiz
	5	Qu	ΙİΖ
	5	Qu	ιiz
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
· ·	5	Qu	ΙİΖ
	5	Qu	ΙİΖ
	5	Qu	ΙİΖ

5	Quiz
5	Quiz
5	Quiz
5	Quiz
5	Quiz
5	Quiz
5	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz

6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz
6 Quiz

6	Quiz
6	Quiz
6	Quiz
6	Quiz
6	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz

7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz
7	Quiz

7	' Quiz
7	' Quiz
7	' Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz
8	3 Quiz

8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz
8 Quiz

8	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz

9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
9	Quiz
10	Quiz

10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz

10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz
10	Quiz

Question
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?

What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What are metallic properties?
What is a noble metal?

What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?

What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What is a noble metal?
What are metalloids?
What are metalloids?
What are metalloids?

What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?

What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What are metalloids?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?

What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?

What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What is a sea of electrons?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?

What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?

What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What happens when you move down a group in the metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?

What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?

What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
What are Actinide metals?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?

An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this? An alloy is a combination of metals with non-metals. What is an example of this?

An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
An alloy is a combination of metals with non-metals. What is an example of this?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?

What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?
What type of bonding is common with metallic properties?

What type of bonding is common with metallic properties? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	What type of bonding is common with metallic properties?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions? How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
	How do metallic properties affect chemical reactions?
How do metallic properties affect chemical reactions?	How do metallic properties affect chemical reactions?
	How do metallic properties affect chemical reactions?

How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
How do metallic properties affect chemical reactions?	
Which element has the largest value in metallic properties?	

Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties? Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
, ,	Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?	Which element has the largest value in metallic properties?
	Which element has the largest value in metallic properties?

Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?
Which element has the largest value in metallic properties?

Answer 1	Answer 2
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions

Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Elements characterized by the tendency to give up electrons	Elements characterized by the tendency to cause explosions
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated

Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated
Metals that used to be used for jewelry on kings	Metals that resist oxidation as even when they are heated

Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on ketals that used to be used for jewelry on ketals that tresist oxidation as even when they are heated Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxida		
Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated	Metals that used to be used for jewelry on kings	
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Have properties of both metals and nonmetals Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals		
kings they are heated Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that used to be used for jewelry on ketals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they a		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that projection as even when they are heated		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Have properties of both metals and nonmetals Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals Have properties of both metals and nonmetals		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated	, ,	
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals Have properties of both metals and nonmetals		
Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Metals that resist oxidation as even when they are heated Have properties of both metals and nonmetals Have properties of both metals and nonmetals Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals		
Metals that used to be used for jewelry on kings Metals that resist oxidation as even when they are heated Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals Have properties of both metals and nonmetals Have properties of both metals and nonmetals Located in bottom of periodic table in f block Have properties of both metals and nonmetals Have properties of both metals and nonmetals		
Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Located in bottom of periodic table in f block section Have properties of both metals and nonmetals Have properties of both metals and nonmetals Have properties of both metals and nonmetals Located in bottom of periodic table in f block Have properties of both metals and nonmetals	, ,	
Located in bottom of periodic table in f block section Have properties of both metals and non-metals Located in bottom of periodic table in f block Have properties of both metals and non-	1	
section metals Located in bottom of periodic table in f block Have properties of both metals and non-	·	
	·	
	-	

Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non-metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals

Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
Located in bottom of periodic table in f block section	Have properties of both metals and non- metals
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state

A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state
A mixture or metallic solid solution that has a range of melting points	What holds things in a solid state

What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
What holds things in a solid state
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property

it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property
it decreases in metallic property

property
property
property
property
property
property
property

Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic
Metals that are acidic

Light elements that are stable	Metals that are acidic
Light elements that are stable	Metals that are acidic
Light elements that are stable	Metals that are acidic
Light elements that are stable	Metals that are acidic
Light elements that are stable	Metals that are acidic
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon

Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon

Lawrencium	Silicon
Lawrencium	Silicon
Lawrencium	Silicon
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
Ionic bonding	Covalent Bonding
Ionic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding
lonic bonding	Covalent Bonding

Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding
Covalent Bonding

lonic bonding	Covalent Bonding
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons

The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
The smaller the metal atom the easier it is to lose valence electrons	The larger the metal atom the easier it is to lose valence electrons
Silicon	Francium

Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium

Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium
Silicon	Francium

Answer 3	Answer 4
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus

Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Elements characterized by the tendency to take electrons from other atoms	Electrons that are in between the valence and nucleus
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell

Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell

Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that have properties of both metals and non-metals	Metals that have 1 valence electron in the 5d shell
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring

Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring

Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Metals that resist oxidation even when they are heated	Metals that are extremely unstable and not naturally occurring
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash

Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash

Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
Unstable, radioactive elements	The burst of electrons that are released when waves crash
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted

it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted

it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	lonic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
it increases in metallic property	Ionic bonding improves but electricity is harder to be conducted
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes

Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes
Heavy metals that are extremely unstable	Metals with stable isotopes

Heavy metals that are extremely unstable	Metals with stable isotopes	
Heavy metals that are extremely unstable	Metals with stable isotopes	
Heavy metals that are extremely unstable	Metals with stable isotopes	
Heavy metals that are extremely unstable	Metals with stable isotopes	
Heavy metals that are extremely unstable	Metals with stable isotopes	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	
Boron	Brass	

Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass
Brass

Boron	Brass
Boron	Brass
Boron	Brass

The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are
The smaller the metal atom the more electrons there are

The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
The larger the metal atom the easier it is to gain electrons	The smaller the metal atom the more electrons there are
Gold	Beryllium

Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium
Beryllium

Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium
Gold	Beryllium

Correct Answers	Time Allotted to Answer
	(seconds)
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30

Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Elements characterized by the tendency to give up electrons	30
Metals that resist oxidation as even when they are heated	30

-	
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30

-	
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Metals that resist oxidation as even when they are heated	30
Have properties of both metals and non-metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20

Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20

Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non- metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
Have properties of both metals and non-metals	20
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30

What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30

What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
What holds things in a solid state	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30

it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30

it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
it increases in metallic property	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30

Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30

Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Heavy metals that are extremely unstable	30
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20

Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20
Brass	20

Brass	20
Brass	20
Brass	20
Ionic bonding	20
Ionic bonding	20
lonic bonding	20
Ionic bonding	20
lonic bonding	20
lonic bonding	20
lonic bonding	20
lonic bonding	20
lonic bonding	20
Ionic bonding	20
Ionic bonding	20
lonic bonding	20
lonic bonding	20

lonic bonding	20
lonic bonding	20
lonic bonding	20
Ionic bonding	20
Ionic bonding	20
Ionic bonding	20
Ionic bonding	20
Ionic bonding	20
lonic bonding	20
Ionic bonding	20
lonic bonding	20
Ionic bonding	20
Ionic bonding	20
lonic bonding	20
lonic bonding	20
lonic bonding	20

lonic bonding	20
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30

j.	
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
The larger the metal atom the easier it is to lose valence electrons	30
Francium	20

Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20

Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20
Francium	20

Players
(((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko

ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
(((Jajuan)))

Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker

duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
(((Jajuan)))
Andrew F
Arnav(>^<)

Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter

julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
(((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri

Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie

matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
((((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro

N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya

pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
((((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S

Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba

riya
shrey
sophia
zoe
?? ronojoy ??
(((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy

Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey

sophia
zoe
?? ronojoy ??
((((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will

Will Paasch
alex demchenko
ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe

?? ronojoy ??
(((Jajuan)))
Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko

ashley
conner parker
duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??
(((Jajuan)))

Andrew F
Arnav(>^<)
Dhanshree
Gayatri
Luke
Mo The Pro
N8 Baker
Sam S
Sriveena
Timothy
Wale (lil duub)
Will
Will Paasch
alex demchenko
ashley
conner parker

duncan
hunter
julia
maggie
matt
nya
pravleen
reba
riya
shrey
sophia
zoe
?? ronojoy ??

Answer	Correct / Incorrect	Correct
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to take electrons from other atoms	Incorrect	0
Elements characterized by the tendency to take electrons from other atoms	Incorrect	0
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1

Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to take electrons from other atoms	Incorrect	0
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to take electrons from other atoms	Incorrect	0
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Elements characterized by the tendency to give up electrons	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1

Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1

j.		
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Metals that resist oxidation as even when they are heated	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
	Incorrect	0

Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1

	Incorrect	0
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
Have properties of both metals and non-metals	Correct	1
What holds things in a solid state	Correct	1
A mixture or metallic solid solution that has a range of melting points	Incorrect	0
A mixture or metallic solid solution that has a range of melting points	Incorrect	0
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1

Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Correct	1
Incorrect	0
Incorrect	0
Correct	1
	Incorrect Correct Incorrect Correct Correct Correct Correct Correct Correct Correct Incorrect Incorrect Correct Correct Correct Correct Correct Correct

The burst of electrons that are released when waves crash	Incorrect	0
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
What holds things in a solid state	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
	Incorrect	0
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1

it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
	Incorrect	0
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1

ja-		
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
it increases in metallic property	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
	Incorrect	0
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1

Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
	Incorrect	0
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1

Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Heavy metals that are extremely unstable	Correct	1
Brass	Correct	1
Brass	Correct	1
	Incorrect	0
Lawrencium	Incorrect	0
Lawrencium	Incorrect	0
Lawrencium	Incorrect	0
Silicon	Incorrect	0
Brass	Correct	1
Brass	Correct	1
Brass	Correct	1
	Incorrect	0

Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Correct	1
Incorrect	0
	Correct Correct Incorrect Correct Correct Incorrect Incorrect Correct Incorrect Incorrect Incorrect Incorrect Correct Incorrect Incorrect Incorrect Incorrect

Brass Correct 1 Lawrencium Incorrect 0 Brass Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect 0 Ionic bonding Correct 1 Incorrect 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect 1 Incorrect 1 Incorrect 1 Incorrect 1 Incorrect 1 Incorrect 1 Incorrect 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1			
Brass Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect 0 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect 0 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1	Brass	Correct	1
lonic bonding Correct 1 Ionic bonding Correct 1 Incorrect O Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect O Ionic bonding Correct 1 Incorrect Incorrect Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1	Lawrencium	Incorrect	0
lonic bonding Correct Incorrect	Brass	Correct	1
Incorrect 0 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Incorrect 0 Incorrect 1 Incorrect 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1	lonic bonding	Correct	1
lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1	lonic bonding	Correct	1
lonic bonding Correct 1 Ionic bonding Correct Incorrect Incorrect Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Correct Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding Ionic bonding		Incorrect	0
lonic bonding Correct Incorrect O Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1 Ionic bonding Correct 1	lonic bonding	Correct	1
Incorrect 0 Incorrect 0 Incorrect 1 Incorr	lonic bonding	Correct	1
lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1	lonic bonding	Correct	1
lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1		Incorrect	0
lonic bonding Correct 1 lonic bonding Correct 1 lonic bonding Correct 1	lonic bonding	Correct	1
lonic bonding Correct 1 lonic bonding Correct 1	lonic bonding	Correct	1
Ionic bonding Correct 1	lonic bonding	Correct	1
	lonic bonding	Correct	1
lonic bonding Correct 1	Ionic bonding	Correct	1
	lonic bonding	Correct	1

Correct Correct Correct Incorrect Incorrect	1 0
Incorrect	0
Correct	
	1
Incorrect	
	0
Incorrect	0
Incorrect	0
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Incorrect	0
Incorrect	0
Correct	1
Correct	1
Incorrect	0
	Incorrect Correct Incorrect Correct Incorrect Incorrect Correct Correct Correct

Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Correct	1
	Correct Correct Incorrect Correct Correct Incorrect Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct

The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
	Incorrect	0
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The smaller the metal atom the easier it is to lose valence electrons	Incorrect	0
The larger the metal atom the easier it is to gain electrons	Incorrect	0
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
The larger the metal atom the easier it is to lose valence electrons	Correct	1
Francium	Correct	1
	*	

Correct Incorrect Correct	0
	0
Correct	
	1
Correct	1
Correct	1
Incorrect	0
Correct	1
Incorrect	0
Correct	1
Correct	1
Incorrect	0
Correct	1
	Correct Correct Correct Correct Correct Correct Correct Correct Correct Incorrect Incorrect Correct

Francium	Correct	1
Francium	Correct	1
	Incorrect	0
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1
Francium	Correct	1

Incorrect	Score (points)	Score without Answer Streak Bonus (points)
0	845	845
1	0	0
1	0	0
0	907	907
0	1000	1000
0	883	883
0	783	783
0	565	565
0	735	735
0	557	557
0	868	868
0	870	870
0	745	745
0	735	735
0	913	913

0	902	902
0	862	862
0	520	520
1	0	0
0	990	990
0	970	970
1	0	0
0	757	757
0	918	918
0	895	895
0	797	797
0	812	812
0	892	892
0	850	850
0	738	738
0	1007	907

0	828	828
0	795	795
0	1100	1000
0	1100	1000
0	1022	922
0	890	790
0	975	875
0	955	855
0	910	810
0	987	887
0	962	862
0	960	860
0	907	807
0	1072	972
0	1032	932
0	1048	948

0	848	748
0	927	927
0	1100	1000
0	1085	985
0	780	780
0	867	767
0	972	872
0	1090	990
0	1012	912
0	1017	917
0	1053	953
0	1035	935
0	932	832
0	1040	840
0	1020	920
1	0	0

0	1183	983
0	1185	985
0	1065	865
0	1085	885
0	1018	818
0	925	725
0	1033	833
0	1028	828
0	1008	808
0	870	670
0	818	618
0	1145	945
0	960	760
0	1150	950
0	1045	845
0	948	848

0	0	1
770	970	0
880	980	0
775	975	0
870	1070	0
1000	1200	0
958	1158	0
850	1050	0
910	1110	0
903	1103	0
765	965	0
752	1052	0
0	0	1
0	0	1
1000	1300	0
1000	1300	0

885	1185	0
0	0	1
637	937	0
683	983	0
0	0	1
543	843	0
832	1132	0
0	0	1
558	858	0
690	990	0
722	1022	0
970	1270	0
548	848	0
0	0	1
0	0	1
743	1043	0

0	0	1
542	842	0
738	1038	0
992	1292	0
757	1057	0
680	980	0
872	1172	0
768	1068	0
713	1013	0
1734	2134	0
1920	1920	0
0	0	1
1984	2384	0
2000	2400	0
1960	2360	0
1330	1330	0

0	2264	1864
0	2060	1660
0	1600	1600
0	2146	1746
0	2094	1694
0	1680	1680
0	1980	1580
0	2316	1916
0	2166	1766
0	2364	1964
0	2174	1774
0	1776	1776
1	0	0
0	2100	1700
0	1840	1840
0	2186	1786

0	2284	1884
0	2400	2000
0	2280	1880
0	2306	1906
0	2214	1814
0	2120	1720
0	2200	1800
0	1380	880
0	952	852
1	0	0
0	1490	990
0	1492	992
0	1478	978
0	977	877
0	1345	845
0	1148	648

0	968	868
0	1338	838
0	1363	863
0	977	877
0	1123	623
0	1438	938
0	1373	873
0	1472	972
0	1347	847
0	1055	955
1	0	0
0	1322	822
0	1007	907
0	1412	912
0	1478	978
0	1500	1000

0	1482	982
0	1367	867
0	1428	928
0	1468	968
0	1392	892
0	1368	868
0	1113	913
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
0	1138	638
0	1005	505
0	983	783
1	0	0

888	1388	0
905	1105	0
513	1013	0
0	0	1
520	1020	0
0	0	1
560	1060	0
905	1105	0
0	0	1
0	0	1
870	1070	0
603	1103	0
0	0	1
0	0	1
0	0	1
0	0	1

0	1420	920
1	0	0
0	1260	760
0	1373	873
0	1278	978
1	0	0
0	973	973
0	863	863
0	743	743
1	0	0
0	1030	530
0	1293	793
0	1110	810
0	735	735
0	1368	868
0	1195	895

560	1060	0
763	763	0
0	0	1
680	680	0
0	0	1
0	0	1
0	0	1
833	833	0
0	0	1
0	0	1
958	958	0
0	0	1
0	0	1
785	785	0
900	1400	0
0	0	1

0	1280	780
0	1310	810
0	1307	907
1	0	0
0	1067	967
0	1090	990
0	1048	948
1	0	0
0	1197	697
0	1288	788
1	0	0
0	942	842
0	1333	833
0	1118	718
0	1278	778
0	665	565

0	775	775
0	1022	922
0	732	732
0	805	805
1	0	0
0	902	802
0	847	847
1	0	0
1	0	0
0	940	940
0	735	735
0	655	555
0	1363	863
0	737	737
0	1148	648
0	1385	885

0	1383	883
1	0	0
0	1170	970
0	1178	978
0	1143	943
1	0	0
0	1418	918
0	1288	788
0	878	878
0	1163	963
0	1308	808
1	0	0
0	1220	720
0	1108	908
1	0	0
0	1155	955

0	915	815
0	958	858
1	0	0
0	928	728
0	860	760
0	933	933
0	933	933
0	1085	985
0	1063	963
0	1138	938
0	1435	935
0	978	878
0	1468	968

Current Total Score (points)	Answer Time (%)
845	31.00%
0	33.00%
0	37.00%
907	18.67%
1000	1.00%
883	23.33%
783	43.33%
565	87.00%
735	53.00%
557	88.67%
868	26.33%
870	26.00%
745	51.00%
735	53.00%
913	17.33%

19.67%
27.67%
96.00%
39.00%
2.00%
6.00%
39.67%
48.67%
16.33%
21.00%
40.67%
37.67%
21.67%
30.00%
52.33%
18.67%

828	34.33%
795	41.00%
2007	1.33%
2100	1.33%
1905	15.67%
1673	42.00%
1540	25.00%
1690	29.00%
1467	38.00%
1855	22.67%
1832	27.67%
1705	28.00%
1642	38.67%
1985	5.67%
1934	13.67%
1910	10.33%

1368	50.33%
927	14.67%
2090	0.67%
2055	3.00%
780	44.00%
1624	46.67%
1890	25.67%
1985	2.00%
1809	17.67%
1829	16.67%
1945	9.33%
1885	13.00%
1670	33.67%
2892	32.00%
1848	16.00%
795	100.00%

3190	3.50%
3285	3.00%
2970	27.00%
2758	23.00%
2558	36.50%
2615	55.00%
2500	33.50%
2883	34.50%
2840	38.50%
2575	66.00%
2460	76.50%
3130	11.00%
2894	48.00%
3060	10.00%
2413	31.00%
1875	30.50%

2090	100.00%
3025	46.00%
1760	24.00%
2599	45.00%
2960	26.00%
3185	1.50%
2967	8.50%
2879	30.00%
3055	18.00%
2988	19.50%
2635	47.00%
3944	49.67%
1848	71.67%
795	70.00%
4490	1.00%
4585	0.67%

4155	23.00%
2758	90.67%
3495	72.67%
3598	63.33%
2500	100.00%
3726	91.33%
3972	33.67%
2575	53.33%
3318	88.33%
4120	62.00%
3916	55.67%
4330	6.00%
3261	90.33%
1875	29.33%
2090	100.00%
4068	51.33%

65.67%	1760
91.67%	3441
52.33%	3998
1.67%	4477
48.67%	4024
64.00%	3859
25.67%	4227
46.33%	4056
57.33%	3648
26.67%	6078
8.00%	3768
100.00%	795
1.67%	6874
1.00%	6985
4.00%	6515
67.00%	4088

5759 13.67% 5658 34.00% 4100 40.00% 5872 25.33% 6066 30.67% 4255 32.00% 5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00% 5627 21.33%		
4100 40.00% 5872 25.33% 6066 30.67% 4255 32.00% 5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	5759	13.67%
5872 25.33% 6066 30.67% 4255 32.00% 5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	5658	34.00%
6066 30.67% 4255 32.00% 5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	4100	40.00%
4255 32.00% 5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	5872	25.33%
5298 42.00% 6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	6066	30.67%
6436 8.33% 6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	4255	32.00%
6082 23.33% 6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	5298	42.00%
6694 3.67% 5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	6436	8.33%
5435 22.67% 3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	6082	23.33%
3651 22.33% 2090 100.00% 6168 30.00% 3600 16.00%	6694	3.67%
2090 100.00% 6168 30.00% 3600 16.00%	5435	22.67%
6168 30.00% 3600 16.00%	3651	22.33%
3600 16.00%	2090	100.00%
	6168	30.00%
5627 21.33%	3600	16.00%
	5627	21.33%

11.67%
1.33%
12.00%
9.33%
18.67%
28.00%
20.00%
24.00%
29.67%
100.00%
2.00%
1.67%
4.33%
24.67%
31.00%
70.33%

5068	26.33%
7210	32.33%
7429	27.33%
5232	24.67%
6421	75.33%
7874	12.33%
7455	25.33%
8166	5.67%
6782	30.67%
4706	9.00%
2090	100.00%
7490	35.67%
4607	18.67%
7039	17.67%
7760	4.33%
8377	1.33%

7786	3.67%
7532	26.67%
7869	14.33%
7644	6.33%
7240	21.67%
8826	26.50%
5833	17.50%
795	100.00%
8364	1.00%
8477	3.00%
7993	2.50%
5065	93.50%
8242	72.50%
7811	99.00%
6051	43.50%
7210	100.00%

8817	22.50%
6337	19.00%
7434	97.50%
7874	4.00%
8475	96.00%
8166	4.00%
7842	88.00%
5811	19.00%
2090	100.00%
7490	90.00%
5677	26.00%
8142	79.50%
7760	8.00%
8377	2.50%
7786	3.50%
7532	3.50%

9289	16.00%
7644	5.00%
8500	48.00%
10199	25.50%
7111	4.50%
795	100.00%
9337	5.50%
9340	27.50%
8736	51.50%
5065	100.00%
9272	94.00%
9104	41.50%
7161	38.00%
7945	53.00%
10185	26.50%
7532	21.00%

8494 88.00% 8637 47.50% 8475 65.00% 8846 64.00% 7842 48.00% 5811 37.50% 2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00% 7644 49.00%		
8475 65.00% 8846 64.00% 7842 48.00% 5811 37.50% 2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	88.00%	8494
8846 64.00% 7842 48.00% 5811 37.50% 2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	47.50%	8637
7842 48.00% 5811 37.50% 2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	65.00%	8475
5811 37.50% 2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	64.00%	8846
2090 100.00% 8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	48.00%	7842
8323 33.50% 5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00%	37.50%	5811
5677 41.00% 8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	100.00%	2090
8142 89.00% 8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	33.50%	8323
8718 8.50% 8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	41.00%	5677
8377 27.50% 7786 7.50% 8317 43.00% 10689 20.00%	89.00%	8142
7786 7.50% 8317 43.00% 10689 20.00%	8.50%	8718
8317 43.00% 10689 20.00%	27.50%	8377
10689 20.00%	7.50%	7786
	43.00%	8317
7644 49.00%	20.00%	10689
	49.00%	7644

9780	44.00%
11509	38.00%
8418	18.67%
795	100.00%
10404	6.67%
10430	2.00%
9784	10.33%
5065	100.00%
10469	60.67%
10392	42.33%
7161	100.00%
8887	31.67%
11518	33.33%
8650	56.33%
9772	44.33%
9302	87.00%

9250	45.00%
9868	15.67%
8574	53.67%
6616	39.00%
2090	100.00%
9225	39.67%
6524	30.67%
8142	66.00%
8718	24.67%
9317	12.00%
8521	53.00%
8972	89.00%
12052	27.33%
8381	52.67%
10928	70.33%
12894	23.00%

9801	23.50%
795	100.00%
11574	6.00%
11608	4.50%
10927	11.50%
5065	100.00%
11887	16.50%
11680	42.50%
8039	24.50%
10050	7.50%
12826	38.50%
8650	100.00%
10992	56.00%
10410	18.50%
9250	33.00%
11023	9.00%

9489	37.00%
7574	28.50%
2090	100.00%
10153	54.50%
7384	48.00%
9075	13.50%
9651	13.50%
10402	3.00%
9584	7.50%
10110	12.50%
13487	13.00%
9359	24.50%
12396	6.50%

Answer Time (seconds)	
	9,3
	9,9
	11,1
	5,6
	0,3
	7
	13
	26,1
	15,9
	26,6
	7,9
	7,8
	15,3
	15,9
	5,2

5,9 8,3 28,8 11,7
28,8
11,7
0,6
1,8
11,9
14,6
4,9
6,3
12,2
11,3
6,5
9
15,7
5,6

10,3
12,3
0,4
0,4
4,7
12,6
7,5
8,7
11,4
6,8
8,3
8,4
11,6
1,7
4,1
3,1

15,1
4,4
0,2
0,9
13,2
14
7,7
0,6
5,3
5
2,8
3,9
10,1
6,4
3,2
20

0,7
0,6
5,4
4,6
7,3
11
6,7
6,9
7,7
13,2
15,3
2,2
9,6
2
6,2
6,1

9,2 4,8 9 5,2 0,3 1,7 6 3,6 3,9 9,4 14,9	
4,8 9 5,2 0,3 1,7 6 3,6 3,9 9,4	20
9 5,2 0,3 1,7 6 3,6 3,9 9,4 14,9	9,2
5,2 0,3 1,7 6 3,6 3,9 9,4	4,8
0,3 1,7 6 3,6 3,9 9,4 14,9	5
1,7 6 3,6 3,9 9,4	5,2
3,6 3,9 9,4 14,9	0,3
3,6 3,9 9,4 14,9	1,7
3,9 9,4 14,9	6
9,4	3,6
14,9	3,9
	9,4
21,5	14,9
	21,5
21	21
0,3	0,3
0,2	0,2

6,9
27,2
21,8
19
30
27,4
10,1
16
26,5
18,6
16,7
1,8
27,1
8,8
30
15,4

19,7
27,5
15,7
0,5
14,6
19,2
7,7
13,9
17,2
8
2,4
30
0,5
0,3
1,2
20,1

4	,1
10	,2
1	12
7	,6
9	,2
9	,6
12	,6
2	,5
	7
1	,1
6	,8
6	,7
3	30
	9
4	,8
6	,4

3,5
0,4
3,6
2,8
5,6
8,4
6
7,2
8,9
30
0,6
0,5
1,3
7,4
9,3
21,1

7,9 9,7 8,2 7,4 22,6 3,7 7,6 1,7 9,2 2,7 30 10,7 5,6 5,3 1,3	
8,2 7,4 22,6 3,7 7,6 1,7 9,2 2,7 30 10,7 5,6 5,3 1,3	7,9
7,4 22,6 3,7 7,6 1,7 9,2 2,7 30 10,7 5,6 5,3 1,3	9,7
22,6 3,7 7,6 1,7 9,2 2,7 30 10,7 5,6 5,3	8,2
3,7 7,6 1,7 9,2 2,7 30 10,7 5,6 5,3	7,4
7,6 1,7 9,2 2,7 30 10,7 5,6 5,3	22,6
1,7 9,2 2,7 30 10,7 5,6 5,3	3,7
9,2 2,7 30 10,7 5,6 5,3	7,6
2,7 30 10,7 5,6 5,3	1,7
30 10,7 5,6 5,3	9,2
5,6 5,3	2,7
5,6 5,3 1,3	30
5,3 1,3	10,7
1,3	5,6
	5,3
0.4	1,3
0,4	0,4

1,1
8
4,3
1,9
6,5
5,3
3,5
20
0,2
0,6
0,5
18,7
14,5
19,8
8,7
20
20

4,	5
	_
3,	8
19,	5
0,	8
19,	2
0,	8
17,	6
3,	8
2	0
1	8
5,	2
15,	9
1,	6
0,	5
0,	7
0,	7

3,2
1
9,6
5,1
0,9
20
1,1
5,5
10,3
20
18,8
8,3
7,6
10,6
5,3
4,2

17,6
9,5
13
12,8
9,6
7,5
20
6,7
8,2
17,8
1,7
5,5
1,5
8,6
4
9,8

8,8
11,4
5,6
30
2
0,6
3,1
30
18,2
12,7
30
9,5
10
16,9
13,3
26,1

13,5
4,7
16,1
11,7
30
11,9
9,2
19,8
7,4
3,6
15,9
26,7
8,2
15,8
21,1
4,6

4,7
20
1,2
0,9
2,3
20
3,3
8,5
4,9
1,5
7,7
20
11,2
3,7
6,6
1,8

	100
7,4	
5,7	
20	
10,9	
9,6	
2,7	
2,7	
0,6	
1,5	
2,5	
2,6	
4,9	
1,3	
	_