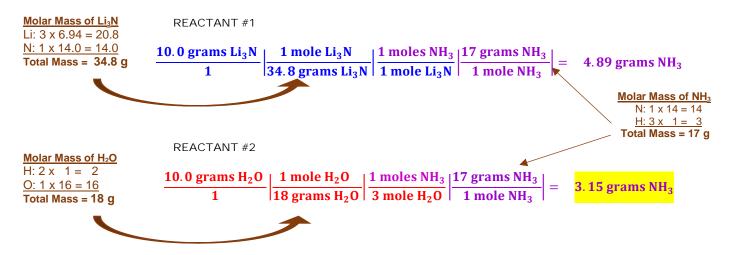
Stoichiometry – Limiting Reactant and Percent Yeild


[Must Show All Work]

Lithium nitride reacts with water or moisture in the air to generate corrosive lithium hydroxide and toxic ammonia gas, according to the following reaction:

1 Li₃N (s) + 3 H₂O (l)
$$\rightarrow$$
 1 NH₃ (g) + 3 LiOH (aq)

1. If 10.0 grams of each reactant are used, which one is the limiting reactant?

IF YOU SOLVED FOR NH3, LOOK BELOW. IF YOU SOLVED FOR LIOH SCROLL DOWN.

2. What is the mass of the theoretical yield of **ammonia**?

```
3. 15 grams NH<sub>3</sub> (IF YOU SOLVED FOR LiOH SCROLL DOWN)
```

3. How much of the excess reactant is left over after the reaction is complete?

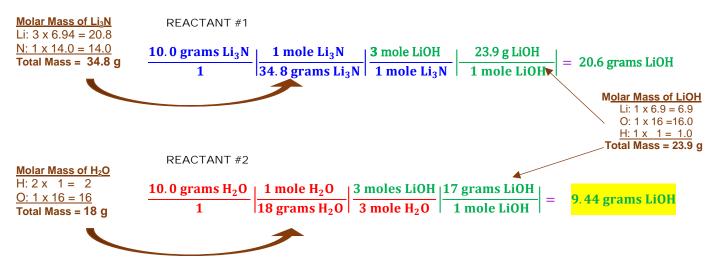
First use the amount of limiting reactant used to calculate the amount of excess reactant used.

```
\frac{10.0 \ grams \ H_2 O \ used}{1} \left| \frac{1 \ mole \ H_2 O}{18 \ grams \ H_2 O} \right| \frac{1 \ mole \ Li_3 N}{3 \ mole \ H_2 O} \left| \frac{34.8 \ grams \ Li_3 N}{1 \ mole \ Li_3 N} \right| = \\ -6.44 \ grams \ Li_3 N \ used
```

Next subtract the amount of excess used from the original amount to calculate amount leftover.

10.0 grams
$$Li_3N$$
 starting -6.44 grams Li_3N used = 3.6 grams Li_3N leftover

4. Suppose a chemist performed this reaction and only produced 2.95 grams of ammonia. Calculate the percent yield based on this result.


$$\frac{2.95 \text{ grams NH}_3}{3.15 \text{ grams NH}_2} \times 100 = 93.7\% \text{ Yield}$$

IF YOU SOLVED FOR LIOH...

Lithium nitride reacts with water or moisture in the air to generate corrosive lithium hydroxide and toxic ammonia gas, according to the following reaction:

1 Li₃N (s) + 3 H₂O (l)
$$\rightarrow$$
 1 NH₃ (g) + 3 LiOH (aq)

1. If 10.0 grams of each reactant are used, which one is the limiting reactant?

2. What is the mass of the theoretical yield of **lithium hydroxide**?

3. How much of the excess reactant is left over after the reaction is complete?

First use the amount of limiting reactant used to calculate the amount of excess reactant used.

$$\frac{10.0 \text{ grams H}_2\text{O used}}{1} \left| \frac{1 \text{ mole H}_2\text{O}}{18 \text{ grams H}_2\text{O}} \right| \frac{1 \text{ mole Li}_3\text{N}}{3 \text{ mole H}_2\text{O}} \left| \frac{34.8 \text{ grams Li}_3\text{N}}{1 \text{ mole Li}_3\text{N}} \right| = -6.44 \text{ grams Li}_3\text{N} \text{ used the li}_3\text{N} = -6.44 \text{ grams Li}_3\text{N} \text{ used the li}_3\text{N} = -6.44 \text{ grams Li}_3\text{N} \text{ used the li}_3\text{N} = -6.44 \text{ grams Li}_3\text{N} \text{ used the li}_3\text{N} = -6.44 \text{ grams Li}$$

Next subtract the amount of excess used from the original amount to calculate amount leftover.

10.0 grams Li₃N starting
$$-6.44$$
 grams Li₃N used = 3.6 grams Li₃N leftover

4. Suppose a chemist performed this reaction and only produced 2.95 grams of **lithium hydroxide**. Calculate the percent yield based on this result.